English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Pseudomagnetic fields for sound at the nanoscale

Brendel, C., Peano, V., Painter, O. J., & Marquardt, F. (in press). Pseudomagnetic fields for sound at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 114(17), E3390-E3395. doi:10.1073/pnas.1615503114.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
img_pseudo_magnetic_field.png (Supplementary material), 67KB
Name:
img_pseudo_magnetic_field.png
Description:
-
Visibility:
Public
MIME-Type / Checksum:
image/png / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
E3390.full.pdf (Any fulltext), 8MB
Name:
E3390.full.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Brendel, Christian1, Author              
Peano, Vittorio2, Author
Painter, Oskar J.2, Author
Marquardt, Florian1, 3, Author              
Affiliations:
1Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_2421700              
2external, ou_persistent22              
3University of Erlangen-Nürnberg, Inst Theoret Phys, Erlangen, Germany, ou_persistent22              

Content

show
hide
Free keywords: TOPOLOGICAL BOUNDARY MODES; MECHANICAL METAMATERIALS; EDGE STATES; GRAPHENE; INSULATOR; WAVESScience & Technology - Other Topics; nanomechanics; pseudomagnetic field; topological physics; optomechanics; phononic crystal;
 Abstract: There is a growing effort in creating chiral transport of sound waves. However, most approaches so far have been confined to the macroscopic scale. Here, we propose an approach suitable to the nanoscale that is based on pseudomagnetic fields. These pseudomagnetic fields for sound waves are the analogue of what electrons experience in strained graphene. In our proposal, they are created by simple geometrical modifications of an existing and experimentally proven phononic crystal design, the snowflake crystal. This platform is robust, scalable, and well-suited for a variety of excitation and readout mechanisms, among them optomechanical approaches.

Details

show
hide
Language(s): eng - English
 Dates: 2017-03-10
 Publication Status: Accepted / In Press
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000399995600003
DOI: 10.1073/pnas.1615503114
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : PNAS
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : Proc. Natl. Acad. Sci. U. S. A.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 114 (17) Sequence Number: - Start / End Page: E3390 - E3395 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230