Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Experimental and theoretical study of multi-quantum vibrational excitation: NO(v=0 -> 1,2,3) in collisions with Au(111).

Golibrzuch, K., Kandratsenka, A., Rahinov, I., Cooper, R., Auerbach, D. J., Wodtke, A. M., et al. (2013). Experimental and theoretical study of multi-quantum vibrational excitation: NO(v=0 -> 1,2,3) in collisions with Au(111). The Journal of Physical Chemistry A, 117(32), 7091-7101. doi:10.1021/jp400313b.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1838156.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
1838156.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (UNKNOWN id 303; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Golibrzuch, K., Autor
Kandratsenka, A.1, Autor           
Rahinov, I., Autor
Cooper, R., Autor
Auerbach, D. J.2, Autor           
Wodtke, A. M.2, Autor           
Bartels, C., Autor
Affiliations:
1Research Group of Reaction Dynamics, MPI for biophysical chemistry, Max Planck Society, ou_578601              
2Department of Dynamics at Surfaces, MPI for biophysical chemistry, Max Planck Society, ou_578600              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We measured absolute probabilities for vibrational excitation of NO(v = 0) molecules in collisions with a Au(111) surface at an incidence energy of translation of 0.4 eV and surface temperatures between 300 and 1100 K. In addition to previously reported excitation to v = 1 and v = 2, we observed excitation to v = 3. The excitation probabilities exhibit an Arrhenius dependence on surface temperature, indicating that the dominant excitation mechanism is nonadiabatic coupling to electron hole pairs. The experimental data are analyzed in terms of a recently introduced kinetic model, which was extended to include four vibrational states. We describe a subpopulation decomposition of the kinetic model, which allows us to examine vibrational population transfer pathways. The analysis indicates that sequential pathways (v = 0 -> 1 -> 2 and v = 0 -> 1 -> 2 -> 3) alone cannot adequately describe production of v = 2 or 3. In addition, we performed first-principles molecular dynamics calculations that incorporate electronically nonadiabatic dynamics via an independent electron surface hopping (IESH) algorithm, which requires as input an ab initio potential energy hypersurface (PES) and nonadiabatic coupling matrix elements, both obtained from density functional theory (DFT). While the LESH-based simulations reproduce the v = 1 data well, they slightly underestimate the excitation probabilities for v = 2, and they significantly underestimate those for v = 3. Furthermore, this implementation of IESH appears to overestimate the importance of sequential energy transfer pathways. We make several suggestions concerning ways to improve this IESH-based model.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013-08-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/jp400313b
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Physical Chemistry A
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 117 (32) Artikelnummer: - Start- / Endseite: 7091 - 7101 Identifikator: -