Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Direkte Methanol-Brennstoffzelle (DMFC) : Analyse experimenteller Miniplant-Bilanzdaten auf Basis der Maxwell-Stefan-Gleichungen

Schultz, T., & Sundmacher, K. (2003). Direkte Methanol-Brennstoffzelle (DMFC): Analyse experimenteller Miniplant-Bilanzdaten auf Basis der Maxwell-Stefan-Gleichungen. Chemie Ingenieur Technik, 75(8), 1087-1088.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schultz, Thorsten1, Autor           
Sundmacher, Kai1, 2, Autor           
Affiliations:
1Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738151              
2Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Die Direkte Methanol-Brennstoffzelle (DMFC) ist ein vielversprechender Ansatz für eine mobile Quelle elektrischer Energie. Insbesondere ist der Energieträger ("Brennstoff") Methanol weitaus handhabungsfreundlicher als Wasserstoffgas, was Vorteile insbesondere bei kleinen Brennstoffzellensystemen bedeutet (kompaktere Abmessungen des Tanks wegen hoher Energiedichte des Methanols, kein Drucktank, einfacheres Nachtanken als bei Wasserstoff, weniger Probleme hinsichtlich Sicherheitsaspekten). Demgegenüber erreicht die DMFC jedoch deutlich geringere Leistungsdichten, als die mit Wasserstoff versorgten Polymerelektrolytmembran-Brennstoffzellen (PEMFC). Die wesentlichen Gründe hierfür sind die langsamere Reaktionskinetik der elektrochemischen Methanoloxidation verglichen mit der elektrochemischen Wasserstoffoxidation sowie der unerwünschte Durchtritt von Methanol und Wasser durch die ionenleitende Membran (PEM) von der Anode zur Kathode (sog. Crossover-Effekt) [1]. Die Stofftransportvorgänge im Inneren der Membran werden mit Hilfe von mathematischen Modellen analysiert, welche auf den verallgemeinerten Maxwell-Stefan-Gleichungen basieren. Die Simulationsergebnisse werden mit experimentellen Bilanzdaten verglichen, die an einer vollautomatischen Miniplant-Anlage gewonnen wurden. Diese Anlage erfasst über eine Reihe von Online-Sensoren alle relevanten Stoffströme, welche in die Brennstoffzelle eintreten bzw. sie verlassen. Zusammen mit dem gemessenen elektrischen Zellstrom können aus diesen Informationen sämtliche innerhalb der Brennstoffzelle fliessenden Stoffströme berechnet werden, insbesondere die Crossover-Ströme von Methanol und Wasser durch die Membran [2]. Die daraus gewonnenen Stofftransportparameter werden in einem Gesamtmodell der DMFC verwendet, mit welchem schliesslich Simulationsrechnungen zum Betriebsverhalten der DMFC durchgeführt wurden. Besonderes Augenmerk liegt hierbei auf dem dynamischen Antwortverhalten, z.B. unter Einfluss von Lastwechseln oder bei geänderter Brennstoffzufuhr. Literatur: [1] Schultz T, Zhou S, Sundmacher K, Chem. Eng. & Techn. 24 (2001) 12-22 [2] Schultz T, Dissertationsschrift in Vorbereitung, O.-v.-G. Universität Magdeburg (2003)

Details

einblenden:
ausblenden:
Sprache(n): deu - German
 Datum: 2003
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 121009
DOI: 10.1002/cite.200390349
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: DECHEMA GVC Jahrestagungen
Veranstaltungsort: Mannheim, Germany
Start-/Enddatum: 2003-09-16 - 2003-09-18

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chemie Ingenieur Technik
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 75 (8) Artikelnummer: - Start- / Endseite: 1087 - 1088 Identifikator: -