English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Photo-lability of deep ocean dissolved black carbon

Stubbins, A., Niggemann, J., & Dittmar, T. (2012). Photo-lability of deep ocean dissolved black carbon. Biogeosciences, 9, 1661-1670.

Item is

Files

show Files
hide Files
:
Dittmar12.pdf (Publisher version), 544KB
Name:
Dittmar12.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Stubbins, A., Author
Niggemann, J.1, Author           
Dittmar, T.2, Author           
Affiliations:
1Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481693              
2Marine Geochemistry Group, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481705              

Content

show
hide
Free keywords: -
 Abstract: Dissolved black carbon (DBC), defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA) oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC) pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance) were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their inherent inertness but by the rate at which they are cycled through the surface ocean's photic zone.

Details

show
hide
Language(s): eng - English
 Dates: 2012
 Publication Status: Issued
 Pages: 10
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 647590
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biogeosciences
  Other : Biogeosciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : Copernicus GmbH on behalf of the European Geosciences Union
Pages: - Volume / Issue: 9 Sequence Number: - Start / End Page: 1661 - 1670 Identifier: ISSN: 1726-4170
CoNE: https://pure.mpg.de/cone/journals/resource/111087929276006