English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Viscoelasticity of thin biomolecular films: A case study on nucleoporin phenylalanine-glycine repeats grafted to a histidine- tag capturing QCM-D sensor.

Eisele, N. B., Andersson, F. I., Frey, S., & Richter, R. P. (2012). Viscoelasticity of thin biomolecular films: A case study on nucleoporin phenylalanine-glycine repeats grafted to a histidine- tag capturing QCM-D sensor. Biomacromolecules, 13(8), 2322-2332. doi:10.1021/bm300577s.

Item is

Files

show Files

Locators

show
hide
Locator:
http://pubs.acs.org/doi/abs/10.1021/bm300577s (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Eisele, N. B., Author
Andersson, F. I., Author
Frey, S.1, Author           
Richter, R. P., Author
Affiliations:
1Department of Cellular Logistics, MPI for biophysical chemistry, Max Planck Society, ou_578574              

Content

show
hide
Free keywords: -
 Abstract: Immobilization of proteins onto surfaces is useful for the controlled generation of biomolecular assemblies that can be readily characterized with in situ label-free surface-sensitive techniques. Here we analyze the performance of a quartz crystal microbalance with dissipation monitoring (QCM-D) sensor surface that enables the selective and oriented immobilization of histidine-tagged molecules for morphological and interaction studies. More specifically, we characterize monolayers of natively unfolded nucleoporin domains that are rich in phenylalanine–glycine repeats (FGRDs). An FGRD meshwork is thought to be responsible for the selectivity of macromolecular transport across the nuclear pore complex between the cytosol and the nucleus of living cells. We demonstrate that nucleoporin FGRD films can be formed on His-tag Capturing Sensors with properties comparable to a previously reported immobilization platform based on supported lipid bilayers (SLB). Approaches to extract the film thickness and viscoelastic properties in a time-resolved manner from the QCM-D response are described, with particular emphasis on the practical implementation of viscoelastic modeling and a detailed analysis of the quality and reliability of the fit. By comparing the results with theoretical predictions for the viscoelastic properties of polymer solutions and gels, and experimental data from an atomic force microscopy indentation assay, we demonstrate that detailed analysis can provide novel insight into the morphology and dynamics of FG repeat domain films. The immobilization approach is simple and versatile, and can be easily extended to other His-tagged biomolecules. The data analysis procedure should be useful for the characterization of other ultrathin biomolecular and polymer films.

Details

show
hide
Language(s): eng - English
 Dates: 2012-07-102012
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/bm300577s
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biomacromolecules
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 13 (8) Sequence Number: - Start / End Page: 2322 - 2332 Identifier: -