Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels

Sun, B., Krieger, W., Rohwerder, M., Ponge, D., & Raabe, D. (2020). Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels. Acta Materialia, 183, 313-328. doi:10.1016/j.actamat.2019.11.029.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sun, Binhan1, Autor           
Krieger, Waldemar2, Autor           
Rohwerder, Michael2, Autor           
Ponge, Dirk1, Autor           
Raabe, Dierk3, Autor           
Affiliations:
1Mechanism-based Alloy Design, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863383              
2Corrosion, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2074315              
3Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Austenite; Austenitic transformations; Deformation; Ferrite; Grain boundaries; High strength steel; Hydrogen; Hydrogen embrittlement; Martensite; Microstructure; Solvents, High dislocation density; Hydrogen trapping; Hydrogen-enhanced decohesion; Local plasticity; Martensite transformations; medium-Mn steels; Multiphase microstructure; Recrystallized microstructures, Manganese steel
 Zusammenfassung: The risk of hydrogen embrittlement (HE) is currently one important factor impeding the use of medium Mn steels. However, knowledge about HE in these materials is sparse. Their multiphase microstructure with highly variable phase conditions (e.g. fraction, percolation and dislocation density) and the feature of deformation-driven phase transformation render systematic studies of HE mechanisms challenging. Here we investigate two austenite-ferrite medium Mn steel samples with very different phase characteristics. The first one has a ferritic matrix (~74 vol. ferrite) with embedded austenite and a high dislocation density (~1014 m−2) in ferrite. The second one has a well recrystallized microstructure consisting of an austenitic matrix (~59 vol. austenite) and embedded ferrite. We observe that the two types of microstructures show very different response to HE, due to fundamental differences between the HE micromechanisms acting in them. The influence of H in the first type of microstructure is explained by the H-enhanced local plastic flow in ferrite and the resulting increased strain incompatibility between ferrite and the adjacent phase mixture of austenite and strain-induced α'-martensite. In the second type of microstructure, the dominant role of H lies in its decohesion effect on phase and grain boundaries, due to the initially trapped H at the interfaces and subsequent H migration driven by deformation-induced austenite-to-martensite transformation. The fundamental change in the prevalent HE mechanisms between these two microstructures is related to the spatial distribution of H within them. This observation provides significant insights for future microstructural design towards higher HE resistance of high-strength steels. © 2019

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-01-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.actamat.2019.11.029
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Acta Materialia
  Kurztitel : Acta Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Kidlington : Elsevier Science
Seiten: - Band / Heft: 183 Artikelnummer: - Start- / Endseite: 313 - 328 Identifikator: ISSN: 1359-6454
CoNE: https://pure.mpg.de/cone/journals/resource/954928603100