Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Atomic scale configuration of planar defects in the Nb-rich C14 Laves phase NbFe2

Šlapáková, M., Zendegani, A., Liebscher, C., Hickel, T., Neugebauer, J., Hammerschmidt, T., et al. (2020). Atomic scale configuration of planar defects in the Nb-rich C14 Laves phase NbFe2. Acta Materialia, 183, 362-376. doi:10.1016/j.actamat.2019.11.004.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Šlapáková, Michaela1, Autor           
Zendegani, Ali2, Autor           
Liebscher, Christian3, Autor           
Hickel, Tilmann2, Autor           
Neugebauer, Jörg4, Autor           
Hammerschmidt, Thomas5, Autor           
Ormeci, Alim6, Autor           
Grin, Juri7, Autor           
Dehm, Gerhard8, Autor           
Kumar, K. Sharvan9, Autor           
Stein, Frank1, Autor           
Affiliations:
1Intermetallic Materials, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863400              
2Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863341              
3Advanced Transmission Electron Microscopy, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863399              
4Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
5ICAMS, Ruhr-Universität Bochum, Bochum, Germany, ou_persistent22              
6Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863405              
7Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863413              
8Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863398              
9Division of Engineering, Brown University, Providence, RI 02912, USA, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Atoms; Binary alloys; Calculations; Charge transfer; Chemical analysis; Chemical bonds; Crystal atomic structure; Defects; High resolution transmission electron microscopy; Iron alloys; Scanning electron microscopy; Stability criteria, Ab initio calculations; Aberration-corrected scanning transmission electron microscopies; Atomic configuration; Homogeneity range; Intermetallic phasis; Laves-phase; Scanning transmission electron microscopy; Stable Configuration, Density functional theory
 Zusammenfassung: Laves phases belong to the group of tetrahedrally close-packed intermetallic phases, and their crystal structure can be described by discrete layer arrangements. They often possess extended homogeneity ranges and the general notion is that deviations from stoichiometry are accommodated by anti-site atoms or vacancies. The present work shows that excess Nb atoms in a Nb-rich NbFe2 C14 Laves phase can also be incorporated in various types of planar defects. Aberration-corrected scanning transmission electron microscopy and density functional theory calculations are employed to characterize the atomic configuration of these defects and to establish stability criteria for them. The planar defects can be categorized as extended or confined ones. The extended defects lie parallel to the basal plane of the surrounding C14 Laves phase and are fully coherent. They contain the characteristic Zr4Al3-type (O) units found in the neighboring Nb6Fe7 µ phase. An analysis of the chemical bonding reveals that the local reduction of the charge transfer is a possible reason for the preference of this atomic arrangement. However, the overall layer stacking deviates from that of the perfect µ phase. The ab initio calculations establish why these exceptionally layered defects can be more stable configurations than coherent nano-precipitates of the perfect µ phase. The confined defects are observed with pyramidal and basal habit planes. The pyramidal defect is only ~1 nm thick and resembles the perfect µ phase. In contrast, the confined basal defect can be regarded as only one single O unit and it appears as if the stacking sequence is disrupted. This configuration is confirmed by ab initio calculations to be metastable. © 2019

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-01-032020-01-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.actamat.2019.11.004
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Acta Materialia
  Kurztitel : Acta Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Kidlington : Elsevier Science
Seiten: - Band / Heft: 183 Artikelnummer: - Start- / Endseite: 362 - 376 Identifikator: ISSN: 1359-6454
CoNE: https://pure.mpg.de/cone/journals/resource/954928603100