English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Reverse and forward engineering of protein pattern formation

Kretschmer, S., Harrington, L., & Schwille, P. (2018). Reverse and forward engineering of protein pattern formation. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 373(1747): 20170104. doi:10.1098/rstb.2017.0104.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kretschmer, Simon1, Author           
Harrington, Leon1, Author           
Schwille, Petra1, Author           
Affiliations:
1Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565169              

Content

show
hide
Free keywords: -
 Abstract: Living systems employ protein pattern formation to regulate important life processes in space and time. Although pattern-forming protein networks have been identified in various prokaryotes and eukaryotes, their systematic experimental characterization is challenging owing to the complex environment of living cells. In turn, cell-free systems are ideally suited for this goal, as they offer defined molecular environments that can be precisely controlled and manipulated. Towards revealing the molecular basis of protein pattern formation, we outline two complementary approaches: the biochemical reverse engineering of reconstituted networks and the de novo design, or forward engineering, of artificial self-organizing systems. We first illustrate the reverse engineering approach by the example of the Escherichia coli Min system, a model system for protein self-organization based on the reversible and energy-dependent interaction of the ATPase MinD and its activating protein MinE with a lipid membrane. By reconstituting MinE mutants impaired in ATPase stimulation, we demonstrate how large-scale Min protein patterns are modulated by MinE activity and concentration. We then provide a perspective on the de novo design of self-organizing protein networks. Tightly integrated reverse and forward engineering approaches will be key to understanding and engineering the intriguing phenomenon of protein pattern formation.

This article is part of the theme issue ‘Self-organization in cell biology’.

Details

show
hide
Language(s):
 Dates: 2018
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1098/rstb.2017.0104
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Royal Society
Pages: - Volume / Issue: 373 (1747) Sequence Number: 20170104 Start / End Page: - Identifier: ISSN: 0962-8436
CoNE: https://pure.mpg.de/cone/journals/resource/963017382021_1