English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Inactivation of serine protease Matriptase1a by its inhibitor Hai1 is required for epithelial integrity of the zebrafish epidermis

Carney, T. J., von der Hardt, S., Sonntag, C., Amsterdam, A., Topczewski, J., Hopkins, N., et al. (2007). Inactivation of serine protease Matriptase1a by its inhibitor Hai1 is required for epithelial integrity of the zebrafish epidermis. Development, 134, 3461-3471.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Carney, Thomas J.1, Author           
von der Hardt, Sophia2, Author           
Sonntag, Carmen2, Author           
Amsterdam, Adam, Author
Topczewski, Jacek, Author
Hopkins, Nancy, Author
Hammerschmidt, Matthias2, Author           
Affiliations:
1Spemann Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society, ou_2243655              
2Georges Köhler Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society, ou_2243653              

Content

show
hide
Free keywords: Hai1; Spint1; Matriptase1; St14; HGF; Met; Epidermis; Scattering; EMT; Zebrafish
 Abstract: Epithelial integrity requires the adhesion of cells to each other as well as to an underlying basement membrane. The modulation of adherence properties is crucial to morphogenesis and wound healing, and deregulated adhesion has been implicated in skin diseases and cancer metastasis. Here, we describe zebrafish that are mutant in the serine protease inhibitor Hai1a (Spint1la), which display disrupted epidermal integrity. These defects are further enhanced upon combined loss of hai1a and its paralog hai1b. By applying in vivo imaging, we demonstrate that Hai1-deficient keratinocytes acquire mesenchymal-like characteristics, lose contact with each other, and become mobile and more susceptible to apoptosis. In addition, inflammation of the mutant skin is evident, although not causative of the epidermal defects. Only later, the epidermis exhibits enhanced cell proliferation. The defects of hai1 mutants can be phenocopied by overexpression and can be fully rescued by simultaneous inactivation of the serine protease Matriptase1a (St14a), indicating that Hai1 promotes epithelial integrity by inhibiting Matriptase1a. By contrast, Hepatocyte growth factor (Hgf), a well-known promoter of epithelial-mesenchymal transitions and a prime target of Matriptase1 activity, plays no major role. Our work provides direct genetic evidence for antagonistic in vivo roles of Hai1 and Matriptase1a to regulate skin homeostasis and remodeling.

Details

show
hide
Language(s): eng - English
 Dates: 2007
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 329405
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Development
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 134 Sequence Number: - Start / End Page: 3461 - 3471 Identifier: -