English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Two R2R3‐MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar

Ma, D., Reichelt, M., Yoshida, K., Gershenzon, J., & Constabel, C. P. (2018). Two R2R3‐MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. The Plant Journal, 96, 949-965. doi:10.1111/tpj.14081.

Item is

Files

show Files
hide Files
:
GER520s1.zip (Supplementary material), 4MB
 
File Permalink:
-
Name:
GER520s1.zip
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Chemical Ecology, MJCO; )
MIME-Type / Checksum:
application/zip
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
GER520.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
GER520.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Chemical Ecology, MJCO; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1111/tpj.14081 (Publisher version)
Description:
OA
OA-Status:
Green

Creators

show
hide
 Creators:
Ma, Dawei, Author
Reichelt, Michael1, Author           
Yoshida, Kazuko, Author
Gershenzon, Jonathan1, Author           
Constabel, C. Peter, Author
Affiliations:
1Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society, ou_421893              

Content

show
hide
Free keywords: -
 Abstract: The phenylpropanoid pathway leads to the production of many important plant secondary metabolites including lignin, chlorogenic acids, flavonoids and phenolic glycosides. Early studies demonstrated that flavonoid biosynthesis is transcriptionally regulated, often by a MYB, bHLH and WDR transcription factor complex. In poplar, several R2R3 MYB transcription factors are known to be involved in flavonoid biosynthesis. Previous work determined that poplar MYB134 and MYB115 are major activators of the proanthocyanidin pathway, and also induce the expression of repressor‐like MYB transcription factors. Here we characterize two new repressor MYBs, poplar MYB165 and MYB194, paralogs which comprise a subgroup of R2R3‐MYBs distinct from previously reported poplar repressors. Both MYB165 and MYB194 repressed the activation of flavonoid promoters by MYB134 in transient activation assays, and both interacted with a co‐expressed bHLH transcription factor, bHLH131, in yeast two‐hybrid assays. Overexpression of MYB165 and MYB194 in hybrid poplar resulted in greatly reduced accumulation of several phenylpropanoids including anthocyanins, proanthocyanidins, phenolic glycosides, and hydroxycinnamic acid esters. Transcriptome analysis of MYB165‐ and MYB194‐overexpressing poplars confirmed repression of many phenylpropanoid enzyme genes. In addition, other MYB genes as well as several shikimate pathway enzyme genes were downregulated by MYB165‐overexpression. By contrast, leaf aromatic amino acid concentrations were greater in MYB165‐overexpressing poplars. Our findings indicate that MYB165 is a major repressor of the flavonoid and phenylpropanoid pathway in poplar, and may also impact the shikimate pathway. The coordinated action of repressor and activator MYBs could be important for the fine‐tuning of proanthocyanidin biosynthesis during development or during stress.

Details

show
hide
Language(s):
 Dates: 2018-08-202018-09-032018-12
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: GER520
DOI: 10.1111/tpj.14081
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Plant Journal
  Other : Plant J.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Blackwell Science
Pages: - Volume / Issue: 96 Sequence Number: - Start / End Page: 949 - 965 Identifier: ISSN: 0960-7412
CoNE: https://pure.mpg.de/cone/journals/resource/954925579095_1