Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods

Jafari, M., Jamshidian, M., Ziaei-Rad, S., Raabe, D., & Roters, F. (2017). Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods. International Journal of Plasticity, 99, 19-42. doi:10.1016/j.ijplas.2017.08.004.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Jafari, Mohamad1, Autor           
Jamshidian, Mostafa1, Autor           
Ziaei-Rad, Saeed1, Autor           
Raabe, Dierk2, Autor           
Roters, Franz3, Autor           
Affiliations:
1Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran, persistent22              
2Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
3Theory and Simulation, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863392              

Inhalt

einblenden:
ausblenden:
Schlagwörter: FINITE-ELEMENT; DYNAMIC RECRYSTALLIZATION; MICROSTRUCTURE EVOLUTION; POLYCRYSTALLINE COPPER; DRIVING-FORCE; MOTION DRIVEN; GROWTH; METALS; ENERGY; DEFORMATIONEngineering; Materials Science; Mechanics; Constitutive modeling; Strain induced boundary migration; Crystal plasticity; Phase field; Finite elements;
 Zusammenfassung: We have developed a thermodynamically-consistent finite-deformation-based constitutive theory to describe strain induced grain boundary migration due to the heterogeneity of stored deformation energy in a plastically deformed polycrystalline cubic metal. Considering a representative volume element, a mesoscale continuum theory is developed based on the coupling between dislocation density-based crystal plasticity and phase field methods. Using the Taylor model-based homogenization method, a multiscale coupled finite-element and phase-field staggered time integration procedure is developed and implemented into the Abaqus/Standard finite element package via a user-defined material subroutine. The developed constitutive model is then used to perform numerical simulations of strain induced grain boundary migration in polycrystalline tantalum. The simulation results are shown to qualitatively and quantitatively agree with experimental results. (C) 2017 Elsevier Ltd. All rights reserved.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-12
 Publikationsstatus: Erschienen
 Seiten: 24
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000414884800002
DOI: 10.1016/j.ijplas.2017.08.004
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: International Journal of Plasticity
  Kurztitel : Int. J. Plast.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York : Pergamon
Seiten: - Band / Heft: 99 Artikelnummer: - Start- / Endseite: 19 - 42 Identifikator: ISSN: 0749-6419
CoNE: https://pure.mpg.de/cone/journals/resource/954925544230