Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Unraveling Hydrophobic Interactions at the Molecular Scale Using Force Spectroscopy and Molecular Dynamics Simulations

Stock, P., Monroe, J. I., Utzig, T., Smith, D. J., Shell, M. S., & Valtiner, M. (2017). Unraveling Hydrophobic Interactions at the Molecular Scale Using Force Spectroscopy and Molecular Dynamics Simulations. ACS Nano, 11(3), 2586-2597. doi:10.1021/acsnano.6b06360.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Stock, Philipp1, Autor           
Monroe, Jacob I.2, Autor           
Utzig, Thomas1, Autor           
Smith, David J.2, Autor           
Shell, M. Scott2, Autor           
Valtiner, Markus1, 3, Autor           
Affiliations:
1Interaction Forces and Functional Materials, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863357              
2Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA, persistent22              
3Institute for physical chemistry II, Technische Universität Bergakademie Freiberg, Leipzigerstraße 29, 09599 Freiberg, Germany , ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: single-molecule force spectroscopy; AFM; molecular dynamics; steered molecular dynamics; Jarzynski's equality; hydrophobic interaction; peptide; self-assembled monolayer;
 Zusammenfassung: Interactions between hydrophobic moieties steer ubiquitous processes in aqueous media, including the self-organization of biologic matter. Recent decades have seen tremendous progress in understanding these for macroscopic hydrophobic interfaces. Yet, it is still a challenge to experimentally measure hydrophobic interactions (HIs) at the single-molecule scale and thus to compare with theory. Here, we present a combined experimental simulation approach to directly measure and quantify the sequence dependence and additivity of HIs in peptide systems at the single-molecule scale. We combine dynamic single-molecule force spectroscopy on model peptides with fully atomistic, both equilibrium and nonequilibrium, molecular dynamics (MD) simulations of the same systems. Specifically, we mutate a flexible (GS)(5) peptide scaffold with increasing numbers of hydrophobic leucine monomers and measure the peptides' desorption from hydrophobic self-assembled monolayer surfaces. Based on the analysis of nonequilibrium work-trajectories, we measure an interaction free energy that scales linearly with 3.0-3.4 k(B)T per leucine. In good agreement, simulations indicate a similar trend with 2.1 k(B)T per leucine, while also providing a detailed molecular view into HIs. This approach potentially provides a roadmap for directly extracting qualitative and quantitative single-molecule interactions at solid/liquid interfaces in a wide range of fields, including interactions at biointerfaces and adhesive interactions in industrial applications.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-03-28
 Publikationsstatus: Erschienen
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000398014900025
DOI: 10.1021/acsnano.6b06360
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Nano
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 11 (3) Artikelnummer: - Start- / Endseite: 2586 - 2597 Identifikator: ISSN: 1936-0851
CoNE: https://pure.mpg.de/cone/journals/resource/1936-0851