Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Quantifying deformation processes near grain boundaries in α titanium using nanoindentation and crystal plasticity modeling

Su, Y., Zambaldi, C., Mercier, D., Eisenlohr, P., Bieler, T. R., & Crimp, M. A. (2016). Quantifying deformation processes near grain boundaries in α titanium using nanoindentation and crystal plasticity modeling. International Journal of Plasticity, 86, 170-186. doi:10.1016/j.ijplas.2016.08.007.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Su, Yang1, Autor           
Zambaldi, Claudio2, Autor           
Mercier, David2, Autor           
Eisenlohr, Philip3, Autor           
Bieler, Thomas R.1, Autor           
Crimp, Martin A.1, Autor           
Affiliations:
1Michigan State University, East Lansing, MI, USA, ou_persistent22              
2Theory and Simulation, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863392              
3Michigan State University, Chemical Engineering and Materials Science, East Lansing, MI 48824, USA, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Atomic force microscopy; Dislocations (crystals); Finite element method; Grain boundaries; Indentation; Nanoindentation; Piles; Plasticity; Topography, Crystal plasticity; Crystal plasticity finite element; Crystal plasticity models; Deformation process; Deformation transfer; Dislocation nucleation; Indentation deformation; Low angle boundaries, Single crystals
 Zusammenfassung: The influence of grain boundaries on plastic deformation was studied by carrying out nanoindentation near grain boundaries (GBs). Surface topographies of indentations near grain boundaries were characterized using atomic force microscopy (AFM) and compared to corresponding single crystal indent topographies collected from indentations in grain interiors. Comparison of the single crystal indents to indents adjacent to low-angle boundaries shows that these boundaries have limited effect on the size and shape of the indent topography. Higher angle boundaries result in a decrease in the pile-up topography observed in the receiving grain, and in some cases increases in the topographic height in the indented grain, indicating deformation transfer across these boundaries is more difficult. A crystal plasticity finite element (CPFE) model of the indentation geometry was built to simulate both the single crystal and the near grain boundary indentation (bi-crystal indentation) deformation process. The accuracy of the model is evaluated by comparing the point-wise volumetric differences between simulated and experimentally measured topographies. Good agreement, in both single and bi-crystal cases, suggests that the crystal plasticity kinematics plays a dominant role in single crystal indentation deformation, and is also essential to bi-crystal indentation. Despite the good agreement, some differences between experimental and simulated topographies were observed. These discrepancies have been rationalized in terms of reverse plasticity and the inability of the model to capture the full resistance of the boundary to slip. This is discussed in terms of dislocation nucleation versus glide in the model and in the physics of the slip transfer process. © 2016 Elsevier Ltd. All rights reserved.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-11-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.ijplas.2016.08.007
BibTex Citekey: Su2016170
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: International Journal of Plasticity
  Kurztitel : Int. J. Plast.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York : Pergamon
Seiten: - Band / Heft: 86 Artikelnummer: - Start- / Endseite: 170 - 186 Identifikator: ISSN: 0749-6419
CoNE: https://pure.mpg.de/cone/journals/resource/954925544230