Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Bloch Wavefunction Reconstruction using Multidimensional Photoemission Spectroscopy

Schüler, M., Pincelli, T., Dong, S., Devereaux, T. P., Wolf, M., Rettig, L., et al. (in preparation). Bloch Wavefunction Reconstruction using Multidimensional Photoemission Spectroscopy.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2103.17168.pdf (Preprint), 4MB
Name:
2103.17168.pdf
Beschreibung:
File downloaded from arXiv at 2021-04-20 12:49
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schüler, Michael1, Autor
Pincelli, Tommaso2, Autor           
Dong, Shuo2, Autor           
Devereaux, Thomas P.1, 3, Autor
Wolf, Martin2, Autor           
Rettig, Laurenz2, Autor           
Ernstorfer, Ralph2, Autor           
Beaulieu, Samuel2, 4, Autor           
Affiliations:
1Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, ou_persistent22              
2Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
3Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA, ou_persistent22              
4Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405, Talence, France, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Condensed Matter, Materials Science, cond-mat.mtrl-sci, Condensed Matter, Mesoscale and Nanoscale Physics, cond-mat.mes-hall
 Zusammenfassung: Angle-resolved spectroscopy is the most powerful technique to investigate the
electronic band structure of crystalline solids. To completely characterize the electronic structure of topological materials, one needs to go beyond band structure mapping and probe the texture of the Bloch wavefunction in momentum-space, associated with Berry curvature and topological invariants. Because phase information is lost in the process of measuring photoemission intensities, retrieving the complex-valued Bloch wavefunction from photoemission data has yet remained elusive. In this Article, we introduce a novel measurement methodology and observable in extreme ultraviolet angle-resolved photoemission spectroscopy, based on continuous modulation of the ionizing radiation polarization axis. By tracking the energy- and momentum-resolved amplitude and phase of the photoemission modulation upon polarization variation, we reconstruct the Bloch wavefunction of prototypical
semiconducting transition metal dichalcogenide 2H-WSe2 with minimal theory input. This novel experimental scheme, which is articulated around the manipulation of the photoionization transition dipole matrix element, in combination with a simple tight-binding theory, is general and can be extended to provide insights into the Bloch wavefunction of many relevant crystalline solids.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-03-31
 Publikationsstatus: Keine Angabe
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2103.17168
URI: https://arxiv.org/abs/2103.17168
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: