Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal

Oh, S. H., Legros, M., Kiener, D., & Dehm, G. (2009). In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nature Materials, 8(2), 95-100. doi:10.1038/NMAT2370.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Oh, Sang Ho1, 2, Autor           
Legros, Marc3, Autor           
Kiener, Daniel2, Autor           
Dehm, Gerhard2, 4, 5, Autor           
Affiliations:
1Division of Electron Microscopic Research, Korea Basic Science Institute, 52 Eoeun-dong, Daejeon 305-333, South Korea, ou_persistent22              
2Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Austria, ou_persistent22              
3CEMES-CNRS, 29 rue J. Marvig, 31055 Toulouse, France, ou_persistent22              
4Department of Materials Physics, Montanuniversität Leoben, Austria, ou_persistent22              
5Department of Chemistry and Biochemistry, University of Munich, Butenandtstr. 5-13 (E), 81377 Munich, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: ‘Smaller is stronger’ does not hold true only for nanocrystalline materials1 but also for single crystals2–5. It is argued that this effect is caused by geometrical constraints on the nucleation and motion of dislocations in submicrometre-sized crystals6,7. Here, we report the first in situ transmission electron microscopy tensile tests of a submicrometre aluminium single crystal that are capable of providing direct insight into sourcecontrolled dislocation plasticity in a submicrometre crystal. Single-ended sources emit dislocations that escape the crystal before being able to multiply. As dislocation nucleation and loss rates are counterbalanced at about 0.2 events per second, the dislocation density remains statistically constant throughout the deformation at strain rates of about 10-4 s-1. However, a sudden increase in strain rate to 10-3 s-1 causes a noticeable surge in dislocation density as the nucleation rate outweighs the loss rate. This observation indicates that the deformation of submicrometre crystals is strain-rate sensitive.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2009-02
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/NMAT2370
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Materials
  Kurztitel : Nat. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : Nature Pub. Group
Seiten: - Band / Heft: 8 (2) Artikelnummer: - Start- / Endseite: 95 - 100 Identifikator: ISSN: 1476-1122
CoNE: https://pure.mpg.de/cone/journals/resource/111054835734000