English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Evapotranspiration dynamics in a boreal peatland and its impact on the water and energy balance

Wu, J., Kutzbach, L., Jager, D., Wille, C., & Wilmking, M. (2010). Evapotranspiration dynamics in a boreal peatland and its impact on the water and energy balance. Journal of Geophysical Research-Biogeosciences, 115(G4): G04038. doi:10.1029/2009JG001075.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Wu, Jiabing, Author
Kutzbach, Lars1, Author           
Jager, Daniel, Author
Wille, Christian, Author
Wilmking, Martin, Author
Affiliations:
1CRG Regional Hydrology in Terrestrial Systems, Research Area B: Climate Manifestations and Impacts, The CliSAP Cluster of Excellence, External Organizations, ou_2025292              

Content

show
hide
Free keywords: evapotranspiration dynamics, eddy covariance, boreal peatland
 Abstract: Hydrological conditions play a key role in the carbon cycle of northern peatlands. This study examines the evapotranspiration (ET) dynamics and its impact on the water and energy balance in response to differing meteorological conditions during the exceptionally dry year 2006 and the normal wet year 2007 at a boreal peatland in Finland. Energy and water vapor fluxes were determined continuously using the eddy covariance approach. Daily ET rates varied considerably during the growing season and averaged 2.23 ± 0.15 mm d−1 and 1.59 ± 0.07 mm d−1 in the dry and wet year, respectively. Synoptic weather conditions as reflected by incoming radiation and water vapor pressure deficit (VPD) were the key factors controlling ET. Differences in the precipitation patterns and summer temperature also accounted for some of the observed differences in ET between the 2 years. No evidence was found for a relationship between ET rates and water table level, probably due to the relatively high water table level even in the dry year. Latent heat flux dominated the energy balance, particularly in the dry year 2006 with 60% of cumulative precipitation returned to the atmosphere through ET. In the wet year 2007, runoff dominated the water loss, and only 36% of the cumulative precipitation was returned to the atmosphere through ET. While the annual water balance regime of the peatland was mainly regulated by the precipitation pattern, daily measured ET was closely related to potential evaporation, and latent heat flux could be well modeled by the Penman-Monteith approach, suggesting two feasible schemes for ET prediction in peatlands under well watered conditions.

Details

show
hide
Language(s): eng - English
 Dates: 2010
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1029/2009JG001075
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research-Biogeosciences
  Other : J. Geophys. Res. - Biogeosciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Wiley
Pages: - Volume / Issue: 115 (G4) Sequence Number: G04038 Start / End Page: - Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/1000000000326920