English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The impact of mass transport and methanol crossover on the direct methanol fuel cell

Scott, K., Taama, W. M., Argyropoulos, P., & Sundmacher, K. (1999). The impact of mass transport and methanol crossover on the direct methanol fuel cell. Journal of Power Sources, 83, 204-216. doi:10.1016/S0378-7753(99)00303-1.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Scott, K., Author
Taama, W. M., Author
Argyropoulos, P., Author
Sundmacher, K.1, 2, Author           
Affiliations:
1Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738151              
2Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

Content

show
hide
Free keywords: -
 Abstract: The performance of a liquid feed direct methanol fuel cell based on a Nation solid polymerelectrolyte membrane is reported. The cell utilises a porous Pt-Ru-carbon supported catalystanode. The effect of cell temperature, air cathode pressure, methanol fuel flow rate and methanol concentration on the power performance of a small-scale (9 cm area) cell is described. Data reported is analysed in terms of semi-empirical models for the effect of methanol crossover by diffusion on cathode potential and thus cell voltage. Mass transfer characteristics of the anode reaction are interpreted in terms of the influence of carbon dioxide gas evolution and methanol diffusion in the carbon cloth diffusion layer. Preliminary evalution of reaction orders and anode polarisation agree with a previous suggested mechanism for methanol oxidatin involving a rate limiting step of surface reaction between absorbed CO and OH species.

Details

show
hide
Language(s): eng - English
 Dates: 1999
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 112009
Other: 44
DOI: 10.1016/S0378-7753(99)00303-1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Power Sources
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 83 Sequence Number: - Start / End Page: 204 - 216 Identifier: -