English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Taxonomic and functional diversity of a coastal planktonic bacterial community in a river-influenced marine area

Thiele, S., Richter, M., Balestra, C., Gloeckner, F. O., & Casotti, R. (2017). Taxonomic and functional diversity of a coastal planktonic bacterial community in a river-influenced marine area. MARINE GENOMICS, 32, 61-69. doi:10.1016/j.margen.2016.12.003.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Thiele, Stefan1, Author           
Richter, Michael2, Author           
Balestra, Cecilia, Author
Gloeckner, Frank Oliver2, Author           
Casotti, Raffaella, Author
Affiliations:
1Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481696              
2Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481697              

Content

show
hide
Free keywords: SULFUR-OXIDIZING PROKARYOTES; MICROBIAL COMMUNITY; SALINITY GRADIENT; SINGLE-CELL; FRESH-WATER; BACTERIOPLANKTON; SEA; GENE; GENOME; PHYTOPLANKTONGenetics & Heredity; Marine & Freshwater Biology; Gulf of Naples; High throughput sequencing; Same River; Mediterranean Sea; Microbial ecology;
 Abstract: The Gulf of Naples is a dynamical area with intense exchanges between offshore oligotrophic and coastal eutrophic waters with frequent freshwater inputs. The Sarno River, one of the most polluted rivers in Europe, strongly contributes to the pollution of the area, discharging high amounts of heavy metals and organic wastes from heavily cultivated and industrial areas. This paper reports on the diversity and community structure of the marine residential Bacteria and Archaea of the Gulf of Naples in an area close to the river Sarno plume and investigates their small-scale taxonomic diversity and expression patterns as a proxy of potential metabolic activity using metagenomics and metatranscriptomics. Bacteria and Archaea were mainly represented by marine clades, with only minor contributors from freshwater ones. The community was dominated by Alpha- and Gammaproteobacteria, of which Rhodospirillales, Pelagibacteriales, and Oceanospirilalles were most represented. However, Alteromonadales and Rhodobacterales were the most active, despite their relative lower abundance, suggesting that they are important for overall ecosystem functioning and nutrient cycling. Nitrification and a reversed form of dissimilatory sulfate reduction were the major metabolic processes found in the metatrascriptomes and were mainly associated to NitrosopuMilaleS and Pelagibacter, respectively. No clear indication of transcripts related to stress induced by heavy metals or organic pollutants was found. In general, despite the high loads of pollutants discharged continuously by the Sarno River, the microbial community did not show marks of stress-induced changes neither structural nor functional, thus suggesting that this river has little or no effect on the planktonic bacterial community of the Gulf of Naples. (C) 2016 Elsevier B.V. All rights reserved.

Details

show
hide
Language(s): eng - English
 Dates: 2017
 Publication Status: Issued
 Pages: 9
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: MARINE GENOMICS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS : ELSEVIER SCIENCE BV
Pages: - Volume / Issue: 32 Sequence Number: - Start / End Page: 61 - 69 Identifier: ISSN: 1874-7787