Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Hydrophobic nanoconfinement suppresses fluctuations in supercooled water

Strekalova, E. G., Mazza, M. G., Stanley, H. E., & Franzese, G. (2012). Hydrophobic nanoconfinement suppresses fluctuations in supercooled water. Journal of Physics: Condensed Matter, 24(6): 064111. doi:10.1088/0953-8984/24/6/064111.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Strekalova, E. G., Autor
Mazza, Marco G.1, Autor           
Stanley, H. E., Autor
Franzese, G., Autor
Affiliations:
1Group Non-equilibrium soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063308              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We perform very efficient Monte Carlo simulations to study the phase diagram of a water monolayer confined in a fixed disordered matrix of hydrophobic nanoparticles between two hydrophobic plates. We consider different hydrophobic nanoparticle concentrations c. We adopt a coarse-grained model of water that, for c = 0, displays a first-order liquid–liquid phase transition (LLPT) line with negative slope in the pressure–temperature (P–T) plane, ending in a liquid–liquid critical point at about 174 K and 0.13 GPa. We show that upon increase of c the liquid–gas spinodal and the temperature of the maximum density line are shifted with respect to the c = 0 case. We also find dramatic changes in the region around the LLPT. In particular, we observe a substantial (more than 90%) decrease of isothermal compressibility, thermal expansion coefficient and constant-pressure specific heat upon increasing c, consistent with recent experiments. Moreover, we find that a hydrophobic nanoparticle concentration as small as c = 2.4% is enough to destroy the LLPT for P ! 0.16 GPa. The fluctuations of volume apparently diverge at P ⇡ 0.16 GPa, suggesting that the LLPT line ends in an LL critical point at 0.16 GPa. Therefore, nanoconfinement reduces the range of P–T where the LLPT is observable. By increasing the hydrophobic nanoparticle concentration c, the LLPT becomes weaker and its P–T range smaller. The model allows us to explain these phenomena in terms of a proliferation of interfaces among domains with different local order, promoted by the hydrophobic effect of the water–hydrophobic-nanoparticle interfaces.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012-01-25
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1088/0953-8984/24/6/064111
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Physics: Condensed Matter
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol : IOP Publishing
Seiten: 13 Band / Heft: 24 (6) Artikelnummer: 064111 Start- / Endseite: - Identifikator: ISSN: 0953-8984
CoNE: https://pure.mpg.de/cone/journals/resource/954928562478