English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Frequency domain reduced order model of aligned-spin effective-one-body waveforms with higher-order modes

Cotesta, R., Marsat, S., & Pürrer, M. (2020). Frequency domain reduced order model of aligned-spin effective-one-body waveforms with higher-order modes. Physical Review D, 101(12): 124040. doi:10.1103/PhysRevD.101.124040.

Item is

Files

show Files
hide Files
:
2003.12079.pdf (Preprint), 4MB
Name:
2003.12079.pdf
Description:
File downloaded from arXiv at 2020-04-16 12:05
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PhysRevD.101.124040.pdf (Publisher version), 6MB
Name:
PhysRevD.101.124040.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Cotesta, Roberto1, Author           
Marsat, Sylvain, Author
Pürrer, Michael1, Author           
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1933290              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc
 Abstract: We present a frequency domain reduced order model (ROM) for the aligned-spin
effective-one-body (EOB) model for binary black holes (BBHs) SEOBNRv4HM that
includes the spherical harmonics modes $(\ell, |m|) = (2,1),(3,3),(4,4),(5,5)$
beyond the dominant $(\ell, |m|) = (2,2)$ mode. These higher modes are crucial
to accurately represent the waveform emitted from asymmetric BBHs. We discuss a
decomposition of the waveform, extending other methods in the literature, that
allows us to accurately and efficiently capture the morphology of higher mode
waveforms. We show that the ROM is very accurate with median (maximum) values
of the unfaithfulness against SEOBNRv4HM lower than $0.001\% (0.03\%)$ for
total masses in $[2.8,100] M_\odot$. For a total mass of $M = 300 M_\odot$ the
median (maximum) value of the unfaithfulness increases up to $0.004\%
(0.17\%)$. This is still at least an order of magnitude lower than the
estimated accuracy of SEOBNRv4HM compared to numerical relativity simulations.
The ROM is two orders of magnitude faster in generating a waveform compared to
SEOBNRv4HM. Data analysis applications typically require
$\mathcal{O}(10^6-10^8)$ waveform evaluations for which SEOBNRv4HM is in
general too slow. The ROM is therefore crucial to allow the SEOBNRv4HM waveform
to be used in searches and Bayesian parameter inference. We present a targeted
parameter estimation study that shows the improvements in measuring binary
parameters when using waveforms that includes higher modes and compare against
three other waveform models.

Details

show
hide
Language(s):
 Dates: 2020-03-262020-03-312020
 Publication Status: Issued
 Pages: Fix label in Fig.10
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 101 (12) Sequence Number: 124040 Start / End Page: - Identifier: -