English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Distinguishing Boson Stars from Black Holes and Neutron Stars from Tidal Interactions in Inspiraling Binary Systems

Sennett, N., Hinderer, T., Steinhoff, J., Buonanno, A., & Ossokine, S. (2017). Distinguishing Boson Stars from Black Holes and Neutron Stars from Tidal Interactions in Inspiraling Binary Systems. Physical Review D, 96: 024002. doi:10.1103/PhysRevD.96.024002.

Item is

Files

show Files
hide Files
:
1704.08651.pdf (Preprint), 2MB
Name:
1704.08651.pdf
Description:
File downloaded from arXiv at 2017-07-06 08:07
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PRD_96_024002.pdf (Publisher version), 945KB
 
File Permalink:
-
Name:
PRD_96_024002.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Gravitational Physics (Albert Einstein Institute), MPGR; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
American Physical Society
License:
-

Locators

show

Creators

show
hide
 Creators:
Sennett, Noah1, Author           
Hinderer, Tanja1, Author           
Steinhoff, Jan1, Author           
Buonanno, Alessandra1, Author           
Ossokine, Serguei1, Author           
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1933290              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc
 Abstract: Binary systems containing boson stars---self-gravitating configurations of a complex scalar field--- can potentially mimic black holes or neutron stars as gravitational-wave sources. We investigate the extent to which tidal effects in the gravitational-wave signal can be used to discriminate between these standard sources and boson stars. We consider spherically symmetric boson stars within two classes of scalar self-interactions: an effective-field-theoretically motivated quartic potential and a solitonic potential constructed to produce very compact stars. We compute the tidal deformability parameter characterizing the dominant tidal imprint in the gravitational-wave signals for a large span of the parameter space of each boson star model. We find that the tidal deformability for boson stars with a quartic self-interaction is bounded below by $\Lambda_{\rm min}\approx 280$ and for those with a solitonic interaction by $\Lambda_{\rm min}\approx 1.3$. Employing a Fisher matrix analysis, we estimate the precision with which Advanced LIGO and third-generation detectors can measure these tidal parameters using the inspiral portion of the signal. We discuss a new strategy to improve the distinguishability between black holes/neutrons stars and boson stars by combining deformability measurements of each compact object in a binary system, thereby eliminating the scaling ambiguities in each boson star model. Our analysis shows that current-generation detectors can potentially distinguish boson stars with quartic potentials from black holes, as well as from neutron-star binaries if they have either a large total mass or a large mass ratio. Discriminating solitonic boson stars from black holes using only tidal effects during the inspiral will be difficult with Advanced LIGO, but third-generation detectors should be able to distinguish between binary black holes and these binary boson stars.

Details

show
hide
Language(s):
 Dates: 2017-04-272017
 Publication Status: Issued
 Pages: 18 pages, 8 figures. Submitted to Physical Review D
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
  Other : Phys. Rev. D.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lancaster, Pa. : American Physical Society
Pages: - Volume / Issue: 96 Sequence Number: 024002 Start / End Page: - Identifier: ISSN: 0556-2821
CoNE: https://pure.mpg.de/cone/journals/resource/111088197762258