English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Isolation of gravitational waves from displacement noise and utility of a time-delay device

Somiya, K., Goda, K., Chen, Y., & Mikhailov, E. (2007). Isolation of gravitational waves from displacement noise and utility of a time-delay device. Journal of Physics: Conference Series, 66: 012053.

Item is

Files

show Files
hide Files
:
0610117v2.pdf (Preprint), 312KB
Name:
0610117v2.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-
:
jpconf7_66_012053.pdf (Publisher version), 968KB
Name:
jpconf7_66_012053.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Somiya, Kentaro1, Author           
Goda, Keisuke, Author
Chen, Yanbei2, Author           
Mikhailov, E., Author
Affiliations:
1Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24010              
2Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24013              

Content

show
hide
Free keywords: -
 Abstract: nterferometers with kilometer-scale arms have been built for gravitational-wave detections on the ground; ones with much longer arms are being planned for space-based detection. One fundamental motivation for long baseline interferometry is from displacement noise. In general, the longer the arm length L, the larger the motion the gravitational-wave induces on the test masses, until L becomes comparable to the gravitational wavelength. Recently, schemes have been invented, in which displacement noises can be evaded by employing differences between the influence of test-mass motions and that of gravitational waves on light propagation. However, in these schemes, such differences only becomes significant when L approaches the gravitational wavelength, and shot-noise limited sensitivity becomes worse than that of conventional configurations by a factor of at least (f L/c)^(-2), for f<c/L. Such a factor, although can be overcome theoretically by employing high optical powers, makes these schemes quite impractical. In this paper, we explore the use of time delay in displacement-noise-free interferometers, which can improve their shot-noise-limited sensitivity at low frequencies, to a factor of (f L/c)^(-1) of the shot-noise-limited sensitivity of conventional configurations.

Details

show
hide
Language(s):
 Dates: 2007
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 318026
Other: arXiv:gr-qc/0610117
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Physics: Conference Series
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 66 Sequence Number: 012053 Start / End Page: - Identifier: -