Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

Trivedi, C., & Bollmann, J. H. (2013). Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture. Frontiers in Neural Circuits, 7: 2013.00086, pp. 1-18. doi:10.3389/fncir.2013.00086.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
FrontNeuralCircuits_7_2013_a00086_1.pdf (beliebiger Volltext), 5MB
 
Datei-Permalink:
-
Name:
FrontNeuralCircuits_7_2013_a00086_1.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Medical Research, MHMF; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
externe Referenz:
http://dx.doi.org/10.3389/fncir.2013.00086 (beliebiger Volltext)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Trivedi, Chintan1, Autor           
Bollmann, Johann H.1, Autor           
Affiliations:
1Department of Biomedical Optics, Max Planck Institute for Medical Research, Max Planck Society, ou_1497699              

Inhalt

einblenden:
ausblenden:
Schlagwörter: zebrafish,preycapture,virtualreality,goal-directedbehavior,intermittentlocomotion,double-step saccade,motorsequence,saccadicsuppression
 Zusammenfassung: Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013-02-152013-04-172013-05-102013-05-10
 Publikationsstatus: Erschienen
 Seiten: 18
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.3389/fncir.2013.00086
Anderer: 7905
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Frontiers in Neural Circuits
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 7 Artikelnummer: 2013.00086 Start- / Endseite: 1 - 18 Identifikator: -