English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Vortex flow properties in simulations of solar plage region: Evidence for their role in chromospheric heating

Yadav, N., Cameron, R. H., & Solanki, S. K. (2021). Vortex flow properties in simulations of solar plage region: Evidence for their role in chromospheric heating. Astronomy and Astrophysics, 645: A3. doi:10.1051/0004-6361/202038965.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Yadav, Nitin1, Author           
Cameron, Robert H.2, Author           
Solanki, Sami K.1, Author           
Affiliations:
1Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              
2Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832287              

Content

show
hide
Free keywords: Sun: faculae, plages / Sun: chromosphere / methods: numerical / methods: statistical
 Abstract: Context. Vortex flows exist across a broad range of spatial and temporal scales in the solar atmosphere. Small-scale vortices are thought to play an important role in energy transport in the solar atmosphere. However, their physical properties remain poorly understood due to the limited spatial resolution of the observations.

Aims. We explore and analyze the physical properties of small-scale vortices inside magnetic flux tubes using numerical simulations, and investigate whether they contribute to heating the chromosphere in a plage region.

Methods. Using the three-dimensional radiative magnetohydrodynamic simulation code MURaM, we perform numerical simulations of a unipolar solar plage region. To detect and isolate vortices we use the swirling strength criterion and select the locations where the fluid is rotating with an angular velocity greater than a certain threshold. We concentrate on small-scale vortices as they are the strongest and carry most of the energy. We explore the spatial profiles of physical quantities such as density and horizontal velocity inside these vortices. Moreover, to learn their general characteristics, a statistical investigation is performed.

Results. Magnetic flux tubes have a complex filamentary substructure harboring an abundance of small-scale vortices. At the interfaces between vortices strong current sheets are formed that may dissipate and heat the solar chromosphere. Statistically, vortices have higher densities and higher temperatures than the average values at the same geometrical height in the chromosphere.

Conclusions. We conclude that small-scale vortices are ubiquitous in solar plage regions; they are denser and hotter structures that contribute to chromospheric heating, possibly by dissipation of the current sheets formed at their interfaces.

Details

show
hide
Language(s): eng - English
 Dates: 2021
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1051/0004-6361/202038965
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Les Ulis Cedex A France : EDP Sciences
Pages: - Volume / Issue: 645 Sequence Number: A3 Start / End Page: - Identifier: ISSN: 1432-0746
ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1