Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  SALMON: Scalable Ab-initio Light–Matter simulator for Optics and Nanoscience

Noda, M., Sato, S., Hirokawa, Y., Uemoto, M., Takeuchi, T., Yamada, S., et al. (2019). SALMON: Scalable Ab-initio Light–Matter simulator for Optics and Nanoscience. Computer Physics Communications, 235, 356-365. doi:10.1016/j.cpc.2018.09.018.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1-s2.0-S0010465518303412-main.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
1-s2.0-S0010465518303412-main.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
1804.01404.pdf (Preprint), 2MB
Name:
1804.01404.pdf
Beschreibung:
Downloaded from arxiv.org: 2012-12-14
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2018
Copyright Info:
© the Author(s)

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://dx.doi.org/10.1016/j.cpc.2018.09.018 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://arxiv.org/abs/1804.01404 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Noda, M.1, Autor
Sato, S.2, Autor           
Hirokawa, Y.3, Autor
Uemoto, M.4, Autor
Takeuchi, T.1, Autor
Yamada, S.4, Autor
Yamada, A.4, Autor
Shinohara, Y.5, Autor
Yamaguchi, M.5, Autor
Iida, K.1, Autor
Floss, I.6, Autor
Otobe, T.7, Autor
Lee, K.-M.2, Autor           
Ishimura, K.1, Autor
Boku, T.4, Autor
Bertsch, G. F.8, Autor
Nobusada, K.1, Autor
Yabana, K.4, Autor
Affiliations:
1Institute for Molecular Science, Okazaki, Japan, ou_persistent22              
2Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
3Graduate School of Systems and Information Engineering, University of Tsukuba, Japan, ou_persistent22              
4Center for Computational Sciences, University of Tsukuba, Japan, ou_persistent22              
5Graduate School of Engineering, The University of Tokyo, ou_persistent22              
6Vienna University of Technology, ou_persistent22              
7National Institutes for Quantum and Radiological Science and Technology, Kyoto, Japan, ou_persistent22              
8Institute for Nuclear Theory and Physics Department, University of Washington, Seattle, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Optical properties; Time-dependent density-functional theory; First-principles calculation
 Zusammenfassung: SALMON (Scalable Ab-initio Light–Mattersimulator for Optics and Nanoscience, http://salmon-tddft.jp) is a software package for the simulation of electron dynamics and optical properties of molecules, nanostructures, and crystalline solids based on first-principles time-dependent density functional theory. The core part of the software is the real-time, real-space calculation of the electron dynamics induced in molecules and solids by an external electric field solving the time-dependent Kohn–Sham equation. Using a weak instantaneous perturbing field, linear response properties such as polarizabilities and photoabsorptions in isolated systems and dielectric functions in periodic systems are determined. Using an optical laser pulse, the ultrafast electronic response that may be highly nonlinear in the field strength is investigated in time domain. The propagation of the laser pulse in bulk solids and thin films can also be included in the simulation via coupling the electron dynamics in many microscopic unit cells using Maxwell’s equations describing the time evolution of the electromagnetic fields. The code is efficiently parallelized so that it may describe the electron dynamics in large systems including up to a few thousand atoms. The present paper provides an overview of the capabilities of the software package showing several sample calculations.
Program summary

Program Title: SALMON: Scalable Ab-initio Light–Matter simulator for Optics and Nanoscience

Program Files doi:http://dx.doi.org/10.17632/8pm5znxtsb.1

Licensing provisions: Apache-2.0

Programming language: Fortran 2003

Nature of problem: Electron dynamics in molecules, nanostructures, and crystalline solids induced by an external electric field is calculated based on first-principles time-dependent density functional theory. Using a weak impulsive field, linear optical properties such as polarizabilities, photoabsorptions, and dielectric functions are extracted. Using an optical laser pulse, the ultrafast electronic response that may be highly nonlinear with respect to the exciting field strength is described as well. The propagation of the laser pulse in bulk solids and thin films is considered by coupling the electron dynamics in many microscopic unit cells using Maxwell’s equations describing the time evolution of the electromagnetic field.

Solution method: Electron dynamics is calculated by solving the time-dependent Kohn–Sham equation in real time and real space. For this, the electronic orbitals are discretized on a uniform Cartesian grid in three dimensions. Norm-conserving pseudopotentials are used to account for the interactions between the valence electrons and the ionic cores. Grid spacings in real space and time, typically 0.02 nm and 1 as respectively, determine the spatial and temporal resolutions of the simulation results. In most calculations, the ground state is first calculated by solving the static Kohn–Sham equation, in order to prepare the initial conditions. The orbitals are evolved in time with an explicit integration algorithm such as a truncated Taylor expansion of the evolution operator, together with a predictor–corrector step when necessary. For the propagation of the laser pulse in a bulk solid, Maxwell’s equations are solved using a finite-difference scheme. By this, the electric field of the laser pulse and the electron dynamics in many microscopic unit cells of the crystalline solid are coupled in a multiscale framework.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-07-312018-04-052018-09-272018-10-102019-02
 Publikationsstatus: Erschienen
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.cpc.2018.09.018
arXiv: 1804.01404
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : This research was supported by JST-CREST under grant number JP-MJCR16N5, and by MEXT, Japan as a priority issue theme 7 to be tackled by using Post-K Computer, and by JSPS KAKENHI, Japan Grant Numbers 15H03674, 26-1511, and 16K00175. S.A.S. gratefully acknowledges fellowships by the Alexander von Humboldt Foundation, Germany. I.F. was supported by the FWF Austria (SFB-041 ViCoM, SFB-049 NextLite and doctoral college W1243) and the IMPRS-APS, Germany . Calculations are carried out at Oakforest-PACS at JCAHPC.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Computer Physics Communications
  Kurztitel : Comput. Phys. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier B.V.
Seiten: - Band / Heft: 235 Artikelnummer: - Start- / Endseite: 356 - 365 Identifikator: ISSN: 0010-4655
CoNE: https://pure.mpg.de/cone/journals/resource/954925392326