Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Agonistic and antagonistic roles of fibroblasts and cardiomyocytes on viscoelastic stiffening of engineered human myocardium

Schlick, S. F., Spreckelsen, F., Tiburcy, M., Iyer, L. M., Meyer, T., Zelarayan, L. C., et al. (2019). Agonistic and antagonistic roles of fibroblasts and cardiomyocytes on viscoelastic stiffening of engineered human myocardium. Progress in Biophysics and Molecular Biology, 144, 51-60. doi:10.1016/j.pbiomolbio.2018.11.011.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schlick, S. F., Autor
Spreckelsen, Florian1, Autor           
Tiburcy, M., Autor
Iyer, L. M., Autor
Meyer, T., Autor
Zelarayan, L. C., Autor
Luther, Stefan1, Autor           
Parlitz, Ulrich1, Autor           
Zimmermann, W. H., Autor
Rehfeldt, F., Autor
Affiliations:
1Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Engineered heart muscle; Fibroblasts; Cardiomyocytes; Collagen; Rheology; Nonlinear mechanics
 Zusammenfassung: Cardiomyocyte and stroma cell cross-talk is essential for the formation of collagen-based engineered heart muscle, including engineered human myocardium (EHM). Fibroblasts are a main component of the myocardial stroma. We hypothesize that fibroblasts, by compacting the surrounding collagen network, support the self-organization of cardiomyocytes into a functional syncytium. With a focus on early self-organization processes in EHM, we studied the molecular and biophysical adaptations mediated by defined populations of fibroblasts and embryonic stem cell-derived cardiomyocytes in a collagen type I hydrogel. After a short phase of cell-independent collagen gelation (30 min), tissue compaction was progressively mediated by fibroblasts. Fibroblast-mediated tissue stiffening was attenuated in the presence of cardiomyocytes allowing for the assembly of stably contracting, force-generating EHM within 4 weeks. Comparative RNA-sequencing data corroborated that fibroblasts are particularly sensitive to the tissue compaction process, resulting in the fast activation of transcription profiles, supporting heart muscle development and extracellular matrix synthesis. Large amplitude oscillatory shear (LAOS) measurements revealed nonlinear strain stiffening at physiological strain amplitudes (>2%), which was reduced in the presence of cells. The nonlinear stress-strain response could be characterized by a mathematical model. Collectively, our study defines the interplay between fibroblasts and cardiomyocytes during human heart muscle self-organization in vitro and underscores the relevance of fibroblasts in the biological engineering of a cardiomyogenesis-supporting viscoelastic stroma. We anticipate that the established mathematical model will facilitate future attempts to optimize EHM for in vitro (disease modelling) and in vivo applications (heart repair).

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-12-122019-07
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.pbiomolbio.2018.11.011
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Progress in Biophysics and Molecular Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 144 Artikelnummer: - Start- / Endseite: 51 - 60 Identifikator: -