Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Deducing the kinetics of protein synthesis in vivo from the transition rates measured in vitro.

Rudorf, S., Thommen, M., Rodnina, M. V., & Lipowsky, R. (2014). Deducing the kinetics of protein synthesis in vivo from the transition rates measured in vitro. PLoS Computational Biology, 10(10): e1003909. doi:10.1371/journal.pcbi.1003909.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2069940_Suppl_1.tif (Ergänzendes Material), 129KB
Name:
2069940_Suppl_1.tif
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
image/tiff / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
2069940_Suppl_2.tif (Ergänzendes Material), 37KB
Name:
2069940_Suppl_2.tif
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
image/tiff / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
2069940_Suppl_3.tif (Ergänzendes Material), 610KB
Name:
2069940_Suppl_3.tif
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
image/tiff / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
2069940_Suppl_4.tif (Ergänzendes Material), 181KB
Name:
2069940_Suppl_4.tif
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
image/tiff / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
2069940.pdf (Verlagsversion), 2MB
Name:
2069940.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Rudorf, S., Autor
Thommen, M.1, Autor           
Rodnina, M. V.1, Autor           
Lipowsky, R., Autor
Affiliations:
1Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society, ou_578598              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The molecular machinery of life relies on complex multistep processes that involve numerous individual transitions, such as molecular association and dissociation steps, chemical reactions, and mechanical movements. The corresponding transition rates can be typically measured in vitro but not in vivo. Here, we develop a general method to deduce the in-vivo rates from their in-vitro values. The method has two basic components. First, we introduce the kinetic distance, a new concept by which we can quantitatively compare the kinetics of a multistep process in different environments. The kinetic distance depends logarithmically on the transition rates and can be interpreted in terms of the underlying free energy barriers. Second, we minimize the kinetic distance between the in-vitro and the in-vivo process, imposing the constraint that the deduced rates reproduce a known global property such as the overall in-vivo speed. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression. We describe the latter process by a codon-specific Markov model with three reaction pathways, corresponding to the initial binding of cognate, near-cognate, and non-cognate tRNA, for which we determine all individual transition rates in vitro. We then predict the in-vivo rates by the constrained minimization procedure and validate these rates by three independent sets of in-vivo data, obtained for codon-dependent translation speeds, codon-specific translation dynamics, and missense error frequencies. In all cases, we find good agreement between theory and experiment without adjusting any fit parameter. The deduced in-vivo rates lead to smaller error frequencies than the known in-vitro rates, primarily by an improved initial selection of tRNA. The method introduced here is relatively simple from a computational point of view and can be applied to any biomolecular process, for which we have detailed information about the in-vitro kinetics.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2014-10-30
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1371/journal.pcbi.1003909
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS Computational Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 17 Band / Heft: 10 (10) Artikelnummer: e1003909 Start- / Endseite: - Identifikator: -