Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Evolution of hot polaron states with a nanosecond lifetime in a manganite perovskite.

Raiser, D., Mildner, S., Ifland, B., Sotoudeh, M., Blochl, P., Techert, S., et al. (2017). Evolution of hot polaron states with a nanosecond lifetime in a manganite perovskite. Advanced Energy Materials, 7(12): 1602174. doi:10.1002/aenm.201602174.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2463633.pdf (Verlagsversion), 3MB
Name:
2463633.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Raiser, D.1, Autor           
Mildner, S., Autor
Ifland, B., Autor
Sotoudeh, M., Autor
Blochl, P., Autor
Techert, S.1, Autor           
Jooss, C., Autor
Affiliations:
1Research Group of Structural Dynamics of (Bio)Chemical Systems, MPI for Biophysical Chemistry, Max Planck Society, ou_578564              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Understanding and controlling the relaxation process of optically excited charge carriers in solids with strong correlations is of great interest in the quest for new strategies to exploit solar energy. Usually, optically excited electrons in a solid thermalize rapidly on a femtosecond to picosecond timescale due to interactions with other electrons and phonons. New mechanisms to slow down thermalization will thus be of great significance for efficient light energy conversion, e.g., in photovoltaic devices. Ultrafast optical pump–probe experiments in the manganite Pr0.65Ca0.35MnO3, a photovoltaic, thermoelectric, and electrocatalytic material with strong polaronic correlations, reveal an ultraslow recombination dynamics on a nanosecond-time scale. The nature of long living excitations is further elucidated by photovoltaic measurements, showing the presence of photodiffusion of excited electron–hole polaron pairs. Theoretical considerations suggest that the excited charge carriers are trapped in a hot polaron state. Escape from this state is possible via a slow dipole-forbidden recombination process or via rare thermal fluctuations toward a conical intersection followed by a radiation-less decay. The strong correlation between the excited polaron and the octahedral dynamics of its environment appears to be substantial for stabilizing the hot polaron.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-01-242017-06-21
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/aenm.201602174
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Energy Materials
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 10 Band / Heft: 7 (12) Artikelnummer: 1602174 Start- / Endseite: - Identifikator: -