English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change

Pongratz, J., Reick, C., Raddatz, T., & Claussen, M. (2010). Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophysical Research Letters, 37: L08702. doi:10.1029/2010GL043010.

Item is

Files

show Files
hide Files
:
2010GL043010.pdf (Publisher version), 516KB
Name:
2010GL043010.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Pongratz, J.1, 2, Author           
Reick, C.3, Author           
Raddatz, T.3, Author           
Claussen, M.1, 4, Author           
Affiliations:
1Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913564              
2IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society, ou_913547              
3Global Vegetation Modelling, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913562              
4B 2 - Land Use and Land Cover Change, Research Area B: Climate Manifestations and Impacts, The CliSAP Cluster of Excellence, External Organizations, Bundesstraße 53, 20146 Hamburg, DE, ou_1863482              

Content

show
hide
Free keywords: -
 Abstract: Anthropogenic land cover change (ALCC) is one of the few climate forcings with still unknown sign of their climate response. Major uncertainty results from the often counteracting temperature responses to biogeochemical as compared to biogeophysical effects. Here, we separate the strength of these two effects for ALCC during the last millennium. We add unprecedented detail by (i) using a coupled atmosphere/ocean general circulation model (GCM), and (ii) applying a high-detail reconstruction of historical ALCC. We find that biogeophysical effects have a slight cooling influence on global mean temperature (-0.03 K in the 20th century), while biogeochemical effects lead to strong warming (0.16-0.18 K). During the industrial era, both effects cause significant changes in certain regions; only few regions, however, experience biogeophysical cooling strong enough to dominate the overall temperature response. This study therefore suggests that the climate response to historical ALCC, both globally and in most regions, is dominated by the rise in CO2 caused by ALCC emissions.

Details

show
hide
Language(s): eng - English
 Dates: 2010
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 438871
DOI: 10.1029/2010GL043010
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Research Letters
  Alternative Title : Geophys. Res. Letts.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 37 Sequence Number: L08702 Start / End Page: - Identifier: -