English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Quantitative imaging of electric surface potentials with single-atom sensitivity

Wagner, C., Green, M. F. B., Maiworm, M., Leinen, P., Esat, T., Ferri, N., et al. (2019). Quantitative imaging of electric surface potentials with single-atom sensitivity. Nature Materials, 18(8), 853-859. doi:10.1038/s41563-019-0382-8.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Wagner, Christian1, 2, Author
Green, Matthew. F. B.1, 2, 3, Author
Maiworm, Michael4, Author
Leinen, Philipp1, 2, 3, Author
Esat, Taner1, 2, 3, Author
Ferri, Nicola5, Author           
Friedrich, Niklas1, 2, 3, Author
Findeisen, Rolf4, Author
Tkatchenko, Alexandre5, 6, Author           
Temirov, Ruslan1, 2, 7, Author
Tautz, F. Stefan1, 2, 3, Author
Affiliations:
1Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany, ou_persistent22              
2Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, Jülich, Germany, ou_persistent22              
3Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany, ou_persistent22              
4Otto-von-Guericke-Universität Magdeburg, Laboratory for Systems Theory and Automatic Control, Magdeburg, Germany, ou_persistent22              
5Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
6Physics and Materials Science Research Unit, University of Luxembourg, ou_persistent22              
7II. Physikalisches Institut, Universität zu Köln, Köln, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Because materials consist of positive nuclei and negative electrons, electric potentials are omnipresent at the atomic scale. However, due to the long range of the Coulomb interaction, large-scale structures completely outshine small ones. This makes the isolation and quantification of the electric potentials that originate from nanoscale objects such as atoms or molecules very challenging. Here we report a non-contact scanning probe technique that addresses this challenge. It exploits a quantum dot sensor and the joint electrostatic screening by tip and surface, thus enabling quantitative surface potential imaging across all relevant length scales down to single atoms. We apply the technique to the characterization of a nanostructured surface, thereby extracting workfunction changes and dipole moments for important reference systems. This authenticates the method as a versatile tool to study the building blocks of materials and devices down to the atomic scale.

Details

show
hide
Language(s): eng - English
 Dates: 2018-08-032019-04-182019-06-102019-08
 Publication Status: Issued
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/s41563-019-0382-8
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : CM3 - Controlled Mechanical Manipulation of Molecules
Grant ID : 757634
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: Nature Materials
  Abbreviation : Nat. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : NPG
Pages: 7 Volume / Issue: 18 (8) Sequence Number: - Start / End Page: 853 - 859 Identifier: ISSN: 1476-1122
CoNE: https://pure.mpg.de/cone/journals/resource/111054835734000