English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Numerical Dispersion of Gravity Waves

Schroeder, G., & Schluenzen, K. H. (2009). Numerical Dispersion of Gravity Waves. Monthly Weather Review, 137(12), 4344-4354. doi:10.1175/2009MWR2890.1.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Schroeder, Guido1, Author
Schluenzen, K. Heinke2, 3, Author           
Affiliations:
1external, ou_persistent22              
2B 1 - Arctic and Permafrost, Research Area B: Climate Manifestations and Impacts, The CliSAP Cluster of Excellence, External Organizations, ou_1863481              
3B 5 - Urban Systems - Test Bed Hamburg, Research Area B: Climate Manifestations and Impacts, The CliSAP Cluster of Excellence, External Organizations, Bundesstraße 53, 20146 Hamburg, DE, ou_1863485              

Content

show
hide
Free keywords: ATMOSPHERE; PROPAGATION; DIFFUSION; SYSTEMS; MODEL
 Abstract: When atmospheric gravity waves are simulated in numerical models, they are not only dispersive for physical but also for numerical reasons. Their wave properties (e. g., damping or propagation speed and direction) can depend on grid spacing as well as on the numerical schemes. In this work numerical dispersion relations for atmospheric gravity waves are theoretically derived as well as experimentally measured using the anelastic Mesoscale Transport and Stream model (METRAS). Both the theoretical solution and the numerical model show a retardation of gravity waves with decreasing grid resolution. Furthermore, the influence of a Shapiro seven-point filter is analyzed. The Shapiro seven-point filter causes damping of the shorter waves. Therefore, shorter waves can better be simulated without the seven-point filter. The influence of different advection schemes is analyzed by prescribing a background wind. A first-order upstream scheme and second- and third-order flux integrated essentially nonoscillatory (FIENO) schemes are used. As expected, the damping is the smaller the higher the order of the scheme. The numerical dispersion has severe consequences, when nonuniform grid spacing is used. Waves moving from the fine grid to the coarse are reflected because of numerical dispersion if they are only poorly resolved on the coarse grid. In tests with different refinement factors and wave lengths the reflection is found to be the larger the greater the refinement factor. The results show that refinement factors larger than 3 should not be used with nonuniform grid spacing or two-way nested grids.

Details

show
hide
Language(s): eng - English
 Dates: 2009-12
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: ISI: 000273562700016
DOI: 10.1175/2009MWR2890.1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Monthly Weather Review
  Other : Mon. Weather Rev.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Boston, MA : American Meteorological Society
Pages: - Volume / Issue: 137 (12) Sequence Number: - Start / End Page: 4344 - 4354 Identifier: ISSN: 0027-0644
CoNE: https://pure.mpg.de/cone/journals/resource/954925426210