English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget

Bopp, L., Le Quéré, C., Heimann, M., Manning, A. C., & Monfray, P. (2002). Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochemical Cycles, 16(2), 6-1-6-8. doi:10.1029/2001GB001445.

Item is

Files

show Files
hide Files
:
BGC0445.pdf (Publisher version), 3MB
 
File Permalink:
-
Name:
BGC0445.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1029/2001GB001445 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Bopp, L., Author
Le Quéré, C.1, Author           
Heimann, M.2, Author           
Manning, A. C.3, Author           
Monfray, P., Author
Affiliations:
1Department Biogeochemical Synthesis, Prof. C. Prentice, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497753              
2Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497755              
3Tall Tower Atmospheric Gas Measurements, Dr. J. Lavrič, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497786              

Content

show
hide
Free keywords: ocean; oxygen; outgassing; climate General-circulation model; mean annual cycle; redfield ratios; atmospheric o-2; interannual variability; o-2/n-2 ratio; pacific-ocean; world ocean; CO2; air
 Abstract: [1] Atmospheric O-2 concentrations have been used to estimate the ocean and land sinks of fossil fuel CO2. In previous work, it has been assumed that the oceans have no long-term influence on atmospheric O-2. We address the validity of this assumption using model results and observations. Oceanic O-2 fluxes for the 1860-2100 period are simulated using a coupled climate model in which is nested an ocean biogeochemistry model. Simulated oceanic O-2 fluxes exhibit large interannual (+/- 40 Tmol yr(-1)) and decadal (+/-13 Tmol yr(-1)) variability, as well as a net outgassing to the atmosphere caused by climate change (up to 125 Tmol yr(-1) by 2100). Roughly one quarter of this outgassing is caused by warming of the ocean surface, and the remainder is caused by ocean stratification. The global oceanic O-2 and heat fluxes are strongly correlated for both the decadal variations and the climate trend. Using the observed heat fluxes and the modeled O-2 flux/heat flux relationship, we infer the contribution of the oceans to atmospheric O-2 and infer a correction to the partitioning of the ocean and land CO2 sinks. After considering this correction, the ocean and land sinks are 1.8 +/- 0.8 Pg C yr(- 1) and 0.3 +/- 0.9 Pg C yr(-1), respectively, for the 1980s (a correction of 0.1 from ocean to land) and are 2.3 +/- 0.7 Pg C yr(-1) and 1.2 +/- 0.9 Pg C yr(-1), respectively, in the 1990- 1996 period (a correction of 0.5 from land to ocean). This correction reconciles the 1990s ocean sink estimated by the Intergovernmental Panel on Climate Change Third Assessment Report with ocean models.

Details

show
hide
Language(s):
 Dates: 2002
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2001GB001445
Other: BGC0445
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Global Biogeochemical Cycles
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Geophysical Union
Pages: - Volume / Issue: 16 (2) Sequence Number: - Start / End Page: 6-1 - 6-8 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925553383
ISSN: 0886-6236