English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Sustainable generation of hydrogen using chemicals with regional oversupply - Feasibility of the electrolysis in acido-alkaline reactor

Žeradjanin, A. R., Topalov, A. A., Cherevko, S., & Keeley, G. P. (2014). Sustainable generation of hydrogen using chemicals with regional oversupply - Feasibility of the electrolysis in acido-alkaline reactor. International Journal of Hydrogen Energy, 39(29), 16275-16281. doi:10.1016/j.ijhydene.2014.08.026.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Žeradjanin, Aleksandar R.1, Author           
Topalov, Angel Angelov1, Author           
Cherevko, Serhiy1, Author           
Keeley, Gareth P.1, Author           
Affiliations:
1Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              

Content

show
hide
Free keywords: Hydrogen; Acido-alkaline electrolyzer; Energy conversion; Environment; Waste chemicals
 Abstract: An integral part of the concept of sustainable development and a serious challenge to be addressed is the demanding and costly disposal of the hazardous waste chemicals and/or overproduced chemicals remaining after various production cycles in the chemical industry. For example, the recently reported overproduction of sulfuric acid in China can affect base metal production rates. In this context the consideration of new technologies that can avoid environmental damage or even introduce an economically feasible framework for the utilization of hazardous waste chemicals becomes appealing. In this work, adopting the fundamental aspects of electrochemical thermodynamics, for the first time the feasibility of efficient hydrogen production in an acido-alkaline electrochemical cell is analyzed. Generation of hydrogen, based on the utilization of low cost ("cost-free") acids/bases whose world turnover is measured in tens and hundreds of megatons, and importantly, who suffer from regional overproduction, is proposed. The cell with two electrolytes separated by the cation transparent membrane is proven to be operational at significantly lower voltage than conventional water electrolysis cell, as long as cathodic reaction proceeds in acidic while anodic reaction proceeds in alkaline media. Significant electric energy saving, in comparison to conventional water electrolysis can be of high impact taking into consideration the general tendency of growing electricity price. While the economic justification of this particular concept has to be carefully examined considering the local conditions and technical implementation, acido-alkaline electrochemical cells are recognized as feasible and can have a distinct role for sustainable energy conversion and storage and waste utilization. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Details

show
hide
Language(s): eng - English
 Dates: 2014-10-02
 Publication Status: Issued
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: International Journal of Hydrogen Energy
  Abbreviation : Int. J. Hydrogen Energ.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Elsevier Ltd
Pages: - Volume / Issue: 39 (29) Sequence Number: - Start / End Page: 16275 - 16281 Identifier: ISSN: 0360-3199
CoNE: https://pure.mpg.de/cone/journals/resource/954925521672