Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Direct evidence for efficient ultrafast charge separation in epitaxial WS2/graphene heterostructures

Aeschlimann, S., Rossi, A., Chavez Cervantes, M., Krause, R., Arnoldi, B., Stadtmüller, B., et al. (2020). Direct evidence for efficient ultrafast charge separation in epitaxial WS2/graphene heterostructures. Science Advances, 6(20): eaay0761. doi:10.1126/sciadv.aay0761.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
eaay0761.full.pdf (Verlagsversion), 837KB
Name:
eaay0761.full.pdf
Beschreibung:
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2020
Copyright Info:
© the Author(s)
:
aay0761_SM.pdf (Ergänzendes Material), 4MB
Name:
aay0761_SM.pdf
Beschreibung:
Supplementary Materials
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://arxiv.org/abs/1904.01379 (Preprint)
Beschreibung:
-
OA-Status:
externe Referenz:
https://dx.doi.org/10.1126/sciadv.aay0761 (Verlagsversion)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Aeschlimann, S.1, 2, 3, Autor
Rossi, A.4, 5, Autor
Chavez Cervantes, M.2, 6, Autor           
Krause, R.1, 2, 3, Autor
Arnoldi, B.7, Autor
Stadtmüller, B.7, Autor
Aeschlimann, M.7, Autor
Forti, S.4, Autor
Fabbri, F.5, 6, 7, Autor
Coletti, C.4, 8, Autor
Gierz, I.1, 2, 3, Autor
Affiliations:
1Ultrafast Electron Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_persistent22              
2Center for Free Electron Laser Science, ou_persistent22              
3University of Regensburg, Institute for Experimental and Applied Physics, ou_persistent22              
4Center for Nanotechnology Innovation at NEST, Istituto Italiano di Tecnologia, ou_persistent22              
5NEST, Istituto Nanoscienze, CNR and Scuola Normale Superiore, ou_persistent22              
6International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266714              
7University of Kaiserslautern, Department of Physics and Research Center OPTIMAS, ou_persistent22              
8Graphene Labs, Istituto Italiano di Tecnologia, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2 and graphene. This heterostructure combines the benefits of a direct-gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2 layer. The resulting charge-separated transient state is found to have a lifetime of ∼1 ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2 and graphene bands as revealed by high-resolution ARPES. In combination with spin-selective optical excitation, the investigated WS2/graphene heterostructure might provide a platform for efficient optical spin injection into graphene.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-05-172020-03-022020-05-13
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 1904.01379
DOI: 10.1126/sciadv.aay0761
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : 696656
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Science Advances
  Andere : Sci. Adv.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington : AAAS
Seiten: - Band / Heft: 6 (20) Artikelnummer: eaay0761 Start- / Endseite: - Identifikator: ISSN: 2375-2548
CoNE: https://pure.mpg.de/cone/journals/resource/2375-2548