Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Chemoenzymatic synthesis of differentially protected 3-deoxysugars

Gillingham, D. G., Stallforth, P., Adibekian, A., Seeberger, P. H., & Hilvert, D. (2010). Chemoenzymatic synthesis of differentially protected 3-deoxysugars. Nature Chemistry, 2(2), 102-105. doi:10.1038/nchem.504.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 599KB
 
Datei-Permalink:
-
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Gillingham, Dennis G., Autor
Stallforth, Pierre1, Autor           
Adibekian, Alexander, Autor
Seeberger, Peter H.2, Autor           
Hilvert, Donald, Autor
Affiliations:
1Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863286              
2Peter H. Seeberger, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2040285              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: 3-Deoxysugars are important constituents of complex carbohydrates. For example, 2-keto-3-deoxy-D-manno-octulosonic acid (KDO) is an essential component of lipopolysaccharides in Gram-negative bacteria, 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN) is widely found in carbohydrates of the bacterial cell wall and in lower vertebrates, and sialic acid is a common cap of mammalian glycoproteins. Although ready access to such sugars would benefit the creation of vaccine candidates, antibiotics and small-molecule drugs, their chemical synthesis is difficult. Here we present a simple chemoenzymatic method for preparing differentially protected 3-deoxysugar derivatives from readily available starting materials. It exploits the promiscuous aldolase activity of the enzyme macrophomate synthase (MPS) to add pyruvate enolate diastereoselectively to a wide range of structurally complex aldehydes. A short synthesis of KDN illustrates the utility of this approach. Enzyme promiscuity, which putatively fosters large functional leaps in natural evolution, has great promise as a source of synthetically useful catalytic transformations.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2010
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/nchem.504
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Chemistry
  Kurztitel : Nat. Chem.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : Nature Publishing Group
Seiten: - Band / Heft: 2 (2) Artikelnummer: - Start- / Endseite: 102 - 105 Identifikator: ISSN: 1755-4330