English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Optically excited structural transition in atomic wires on surfaces at the quantum limit

Frigge, T., Hafke, B., Witte, T., Krenzer, B., Streubühr, C., Syed, A. S., et al. (2017). Optically excited structural transition in atomic wires on surfaces at the quantum limit. Nature, 544(7649), 207-211. doi:10.1038/nature21432.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Frigge, Tim1, Author           
Hafke, B.2, Author           
Witte, T.2, Author           
Krenzer, Boris1, Author           
Streubühr, Carla2, Author           
Syed, A. Samad2, Author           
Trontl, Vesna Mikšić2, Author           
Avigo, Isabella2, Author           
Zhou, P.2, Author           
Ligges, Manuel2, Author           
von der Linde, Dietrich D.2, Author           
Bovensiepen, Uwe2, Author           
Horn-von Hoegen, M.3, Author           
Wippermann, Stefan Martin4, Author           
Lücke, Andreas5, Author           
Gerstmann, Uwe6, Author           
Schmidt, W. G.6, Author           
Affiliations:
1Department of Physics, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany, ou_persistent22              
2Fakultät für Physik und Center for Nanointegration (CENIDE), Universität Duisburg-Essen, Lotharstrasse 1, Duisburg, Germany, persistent22              
3Department of Physics, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany , ou_persistent22              
4Atomistic Modelling, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863350              
5Lehrstuhl für Theoretische Physik, Universität Paderborn, Paderborn, Germany, ou_persistent22              
6Lehrstuhl für Theoretische Physik, Universität Paderborn, 33095 Paderborn, Germany, ou_persistent22              

Content

show
hide
Free keywords: CHARGE-DENSITY-WAVE; ULTRAFAST ELECTRON CRYSTALLOGRAPHY; DIFFRACTION; PHASE; MOTIONS;
 Abstract: Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques(1) combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds(2-6). In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer(7-9). This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low-to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic)(8). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors(10,11).

Details

show
hide
Language(s): eng - English
 Dates: 2017-04-13
 Publication Status: Issued
 Pages: 9
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: ISI: 000398897900032
DOI: 10.1038/nature21432
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature
  Abbreviation : Nature
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 544 (7649) Sequence Number: - Start / End Page: 207 - 211 Identifier: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238