English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Ultrathin Zn and ZnO films on Cu(111) as model catalysts

Liu, B. H., Groot, I., Pan, Q., Shaikhutdinov, S. K., & Freund, H.-J. (2017). Ultrathin Zn and ZnO films on Cu(111) as model catalysts. Applied Catalysis A, 548, 16-23. doi:10.1016/j.apcata.2017.06.043.

Item is

Files

show Files
hide Files
:
1-s2.0-S0926860X17303009-main.pdf (Any fulltext), 2MB
Name:
1-s2.0-S0926860X17303009-main.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2017
Copyright Info:
Elsevier
License:
-

Locators

show

Creators

show
hide
 Creators:
Liu, Bo Hong1, Author           
Groot, Irene1, Author           
Pan, Qiushi1, Author           
Shaikhutdinov, Shamil K.1, Author           
Freund, Hans-Joachim1, Author           
Affiliations:
1Chemical Physics, Fritz Haber Institute, Max Planck Society, ou_24022              

Content

show
hide
Free keywords: -
 Abstract: To prepare well-defined models of ZnO-based catalysts, in particular of Cu/ZnO used for methanol synthesis, we studied the structure of Zn and ZnO thin films grown on a Cu(111) single crystal surface using metal vapor deposition. Structural characterization was performed by scanning tunneling microscopy, Auger electron spectroscopy, and low-energy electron diffraction. In agreement with previous studies, Zn wets the Cu surface forming mixed surface layer depending on Zn coverage. Surface oxidation of the Zn film into ZnO, as monitored by STM, showed that the reaction starts at step edges and propagates inside the terrace at increasing temperature. However, the process is affected by Zn migration into the Cu bulk and hence the film formation critically depends on the heating rate. In another approach using Zn deposition in oxygen ambient and subsequent annealing in vacuum, the resulted films were well-ordered and showed a long-range coincidence structure, assigned to the formation of a single ZnO(0001) layer on top of Cu(111). Independent of preparations conditions, the ZnO overlayer did not cover the entire surface, leaving considerable areas exposing Cu(111) or Cu2O/Cu(111) surface. Reactivity measurements for CO oxidation and reverse water gas shift reactions at nearly atmospheric pressures showed no promotional effects of the ZnO overlayer under conditions studied. Moreover, Zn irreversibly migrates into the Cu crystal bulk in an O2 rich ambient, and the surface chemistry is governed, in essence, by a poorly defined Cu-oxide film. However, the ZnO/Cu model catalysts are fairly stable in a mixture of CO2 and H2.

Details

show
hide
Language(s):
 Dates: 2017-06-222017-04-262017-06-302017-07-142017-11-25
 Publication Status: Issued
 Pages: 8
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.apcata.2017.06.043
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Applied Catalysis A
  Other : Appl. Catal. A
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier
Pages: 8 Volume / Issue: 548 Sequence Number: - Start / End Page: 16 - 23 Identifier: Other: 0926-860X
CoNE: https://pure.mpg.de/cone/journals/resource/954925567761