English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Integrated Be-9(+) multi-qubit gate device for the ion-trap quantum computer

Hahn, H., Zarantonello, G., Schulte, M., Bautista-Salvador, A., Hammerer, K., & Ospelkaus, C. (2019). Integrated Be-9(+) multi-qubit gate device for the ion-trap quantum computer. npj Quantum Information, 5: 70. doi:10.1038/s41534-019-0184-5.

Item is

Files

show Files
hide Files
:
1902.07028.pdf (Preprint), 530KB
Name:
1902.07028.pdf
Description:
File downloaded from arXiv at 2019-09-05 12:10
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
s41534-019-0184-5.pdf (Publisher version), 907KB
Name:
s41534-019-0184-5.pdf
Description:
Open Access
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Hahn, Henning, Author
Zarantonello, Giorgio, Author
Schulte, Marius1, Author           
Bautista-Salvador, Amado, Author
Hammerer, Klemens1, Author           
Ospelkaus, Christian, Author
Affiliations:
1Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24010              

Content

show
hide
Free keywords: Quantum Physics, quant-ph
 Abstract: We demonstrate the experimental realization of a two-qubit
M{\o}lmer-S{\o}rensen gate on a magnetic field-insensitive hyperfine transition
in $^9$Be$^+$ ions using microwave-near fields emitted by a single microwave
conductor embedded in a surface-electrode ion trap. The design of the conductor
was optimized to produce a high oscillating magnetic field gradient at the ion
position. The measured gate fidelity is determined to be $98.2\pm1.2\,\%$ and
is limited by technical imperfections, as is confirmed by a comprehensive
numerical error analysis. The conductor design can potentially simplify the
implementation of multi-qubit gates and represents a self-contained, scalable
module for entangling gates within the quantum CCD architecture for an ion-trap
quantum computer.

Details

show
hide
Language(s):
 Dates: 2019-02-192019-09-042019
 Publication Status: Issued
 Pages: 4 figures, 1 table
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: npj Quantum Information
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 5 Sequence Number: 70 Start / End Page: - Identifier: -