English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers

Ohana, O., & Sakmann, B. (1998). Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers. The Journal of Physiology - London, 513(1), 135-148. doi:10.1111/j.1469-7793.1998.135by.x.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers

Files

show Files
hide Files
:
JPhysiol_513_1998_135.pdf (Any fulltext), 2MB
 
File Permalink:
-
Name:
JPhysiol_513_1998_135.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Ohana, Ora1, Author           
Sakmann, Bert1, Author           
Affiliations:
1Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society, ou_1497701              

Content

show
hide
Free keywords: -
 Abstract: 1. Dual whole-cell voltage recordings were made from synaptically connected layer 5 (L5) pyramidal neurones in slices of the young (P14-P16) rat neocortex. The Ca2+ buffers BAPTA or EGTA were loaded into the presynaptic neurone via the pipette recording from the presynaptic neurone to examine their effect on the mean and the coefficient of variation (c.v.) of single fibre EPSP amplitudes, referred to as unitary EPSPs. 2. The fast Ca2+ buffer BAPTA reduced unitary EPSP amplitudes in a concentration dependent way. With 0.1 mM BAPTA in the pipette, the mean EPSP amplitude was reduced by 14 +/- 2.8% (mean +/- s.e.m., n = 7) compared with control pipette solution, whereas with 1.5 mM BAPTA, the mean EPSP amplitude was reduced by 72 +/- 1.5% (n = 5). The concentration of BAPTA that reduced mean EPSP amplitudes to one-half of control was close to 0.7 mM. 3. Saturation of BAPTA during evoked release was tested by comparing the effect of loading the presynaptic neurone with 0.1 mM BAPTA at 2 and 1 mM [Ca2+]o. Reducing [Ca2+]o from 2 to 1 mM, thereby reducing Ca2+ influx into the terminals, decreased the mean EPSP amplitude by 60 +/- 2.2% with control pipette solution and by 62 +/- 1.9% after loading with 0.1 mM BAPTA (n = 7). 4. The slow Ca2+ buffer EGTA at 1 mM reduced mean EPSP amplitudes by 15 +/- 2.5% (n = 5). With 10 mM EGTA mean EPSP amplitudes were reduced by 56 +/- 2.3 % (n = 4). 5. With both Ca2+ buffers, the reduction in mean EPSP amplitudes was associated with an increase in the c.v. of peak EPSP amplitudes, consistent with a reduction of the transmitter release probability as the major mechanism underlying the reduction of the EPSP amplitude. 6. The results suggest that in nerve terminals of thick tufted L5 pyramidal cells the endogenous mobile Ca2+ buffer is equivalent to less than 0.1 mM BAPTA and that at many release sites of pyramidal cell terminals the Ca2+ channel domains overlap, a situation comparable with that at large calyx-type terminals in the brainstem.

Details

show
hide
Language(s): eng - English
 Dates: 1998-03-131998-08-031998-11-15
 Publication Status: Issued
 Pages: 14
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Physiology - London
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Cambridge University Press
Pages: - Volume / Issue: 513 (1) Sequence Number: - Start / End Page: 135 - 148 Identifier: ISSN: 0022-3751
CoNE: https://pure.mpg.de/cone/journals/resource/954925334693_2