Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Modeling and simulating the adaptive electrical properties of stochastic polymeric 3D networks

Sigala, R., Smerieri, A., Schüz, A., Camorani, P., & Erokhin, V. (2013). Modeling and simulating the adaptive electrical properties of stochastic polymeric 3D networks. Modelling and Simulation in Materials Science and Engineering, 21(7): 075007, pp. 1-17. doi:10.1088/0965-0393/21/7/075007.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Sigala, R1, 2, Autor           
Smerieri, A, Autor
Schüz, A1, 2, Autor           
Camorani, P, Autor
Erokhin, V, Autor
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Memristors are passive two-terminal circuit elements that combine resistance and memory. Although in theory memristors are a very promising approach to fabricate hardware with adaptive properties, there are only very few implementations able to show their basic properties. We recently developed stochastic polymeric matrices with a functionality that evidences the formation of self-assembled three-dimensional (3D) networks of memristors. We demonstrated that those networks show the typical hysteretic behavior observed in the 'one input-one output' memristive configuration. Interestingly, using different protocols to electrically stimulate the networks, we also observed that their adaptive properties are similar to those present in the nervous system. Here, we model and simulate the electrical properties of these self-assembled polymeric networks of memristors, the topology of which is defined stochastically. First, we show that the model recreates the hysteretic behavior observed in the real experiments. Second, we demonstrate that the networks modeled indeed have a 3D instead of a planar functionality. Finally, we show that the adaptive properties of the networks depend on their connectivity pattern. Our model was able to replicate fundamental qualitative behavior of the real organic 3D memristor networks; yet, through the simulations, we also explored other interesting properties, such as the relation between connectivity patterns and adaptive properties. Our model and simulations represent an interesting tool to understand the very complex behavior of self-assembled memristor networks, which can finally help to predict and formulate hypotheses for future experiments.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2013-09
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1088/0965-0393/21/7/075007
BibTex Citekey: SigalaSSCE2013
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Modelling and Simulation in Materials Science and Engineering
  Kurztitel : Modelling Simul. Mater. Sci. Eng.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : IOP Pub.
Seiten: - Band / Heft: 21 (7) Artikelnummer: 075007 Start- / Endseite: 1 - 17 Identifikator: ISSN: 0965-0393
CoNE: https://pure.mpg.de/cone/journals/resource/954925581155