Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  110 planar faults in strained bcc metals: Origins and implications of a commonly observed artifact of classical potentials

Möller, J. J., Mrovec, M., Bleskov, I., Neugebauer, J., Hammerschmidt, T., Drautz, R., et al. (2018). 110 planar faults in strained bcc metals: Origins and implications of a commonly observed artifact of classical potentials. Physical Review Materials, 2(9): 093606. doi:10.1103/PhysRevMaterials.2.093606.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Möller, Johannes J.1, 2, Autor           
Mrovec, Matous3, Autor           
Bleskov, Ivan4, Autor           
Neugebauer, Jörg5, Autor           
Hammerschmidt, Thomas6, Autor           
Drautz, Ralf7, Autor           
Elsässer, Christian8, 9, Autor           
Hickel, Tilmann4, Autor           
Bitzek, Erik10, Autor           
Affiliations:
1Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Materials Science and Engineering, Institute I, Martensstr. 5, D-91058 Erlangen, Germany, ou_persistent22              
2Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstr. 11, D-79108 Freiburg, Germany, ou_persistent22              
3Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany, ou_persistent22              
4Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863341              
5Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
6ICAMS, Ruhr-Universität Bochum, Bochum, Germany, ou_persistent22              
7ICAMS, Materials Research Department, Ruhr-Universität Bochum, Universitätsstraße 90a, Bochum, Germany, ou_persistent22              
8Fraunhofer-Institut für Werkstoffmechanik IWM, Wöhlerstr. 11, 79108 Freiburg, Germany, ou_persistent22              
9Albert-Ludwigs-Universität Freiburg, Freiburger Materialforschungszentrum (FMF), Stefan-Meier-Str. 21, 79104 Freiburg, Germany, ou_persistent22              
10Department of Materials Science and Engineering, Institute i, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Large-scale atomistic simulations with classical potentials can provide valuable insights into microscopic deformation mechanisms and defect-defect interactions in materials. Unfortunately, these assets often come with the uncertainty of whether the observed mechanisms are based on realistic physical phenomena or whether they are artifacts of the employed material models. One such example is the often reported occurrence of stable planar faults (PFs) in body-centered cubic (bcc) metals subjected to high strains, e.g., at crack tips or in strained nano-objects. In this paper, we study the strain dependence of the generalized stacking fault energy (GSFE) of 110 planes in various bcc metals with material models of increasing sophistication, i.e., (modified) embedded atom method, angular-dependent, Tersoff, and bond-order potentials as well as density functional theory. We show that under applied tensile strains the GSFE curves of many classical potentials exhibit a local minimum which gives rise to the formation of stable PFs. These PFs do not appear when more sophisticated material models are used and have thus to be regarded as artifacts of the potentials. We demonstrate that the local GSFE minimum is not formed for reasons of symmetry and we recommend including the determination of the strain-dependent (110) GSFE as a benchmark for newly developed potentials. © 2018 American Physical Society.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-09-19
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1103/PhysRevMaterials.2.093606
BibTex Citekey: Möller2018
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review Materials
  Kurztitel : Phys. Rev. Mat.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: College Park, MD : American Physical Society
Seiten: 16 Band / Heft: 2 (9) Artikelnummer: 093606 Start- / Endseite: - Identifikator: ISSN: 2475-9953
CoNE: https://pure.mpg.de/cone/journals/resource/2475-9953