Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  A Cell-Autonomous Signature of Dysregulated Protein Phosphorylation Underlies Muscle Insulin Resistance in Type 2 Diabetes.

Batista, T. M., Jayavelu, A. K., Wewer Albrechtsen, N. J., Iovino, S., Lebastchi, J., Pan, H., et al. (2020). A Cell-Autonomous Signature of Dysregulated Protein Phosphorylation Underlies Muscle Insulin Resistance in Type 2 Diabetes. Cell Metabolism, 32(5), 844-859.e5. doi:10.1016/j.cmet.2020.08.007.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Batista, Thiago M1, Autor
Jayavelu, Ashok Kumar2, Autor           
Wewer Albrechtsen, Nicolai J.2, Autor           
Iovino, Salvatore1, Autor
Lebastchi, Jasmin1, Autor
Pan, Hui1, Autor
Dreyfuss, Jonathan M1, Autor
Krook, Anna1, Autor
Zierath, Juleen R1, Autor
Mann, Matthias2, Autor           
Kahn, C Ronald1, Autor
Affiliations:
1external, ou_persistent22              
2Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565159              

Inhalt

einblenden:
ausblenden:
Schlagwörter: chromatin remodeling; glucose transport; iPSC; insulin resistance; mRNA splicing; mitochondrial oxidation; phosphoproteomics; skeletal muscle; type 2 diabetes; vesicle trafficking
 Zusammenfassung: Skeletal muscle insulin resistance is the earliest defect in type 2 diabetes (T2D), preceding and predicting disease development. To what extent this reflects a primary defect or is secondary to tissue cross talk due to changes in hormones or circulating metabolites is unknown. To address this question, we have developed an invitro disease-in-a-dish model using iPS cells from T2D patients differentiated into myoblasts (iMyos). We find that T2D iMyos in culture exhibit multiple defects mirroring human disease, including an altered insulin signaling, decreased insulin-stimulated glucose uptake, and reduced mitochondrial oxidation. More strikingly, global phosphoproteomic analysis reveals a multidimensional network of signaling defects in T2D iMyos going beyond the canonical insulin-signaling cascade, including proteins involved in regulation of Rho GTPases, mRNA splicing and/or processing, vesicular trafficking, gene transcription, and chromatin remodeling. These cell-autonomous defects and the dysregulated network of protein phosphorylation reveal a new dimension in the cellular mechanisms underlying the fundamental defects in T2D. Copyright © 2020. Published by Elsevier Inc.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-092020-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 32888406
DOI: 10.1016/j.cmet.2020.08.007
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Cell Metabolism
  Andere : Cell Metabolism
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, MA : Cell Press
Seiten: - Band / Heft: 32 (5) Artikelnummer: - Start- / Endseite: 844 - 859.e5 Identifikator: ISSN: 1550-4131
CoNE: https://pure.mpg.de/cone/journals/resource/111088195284928