Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  FFT-based interface decohesion modelling by a nonlocal interphase

Sharma, L., Peerlings, R. H. J., Shanthraj, P., Roters, F., & Geers, M. G. D. (2018). FFT-based interface decohesion modelling by a nonlocal interphase. Advanced Modeling and Simulation in Engineering Sciences, 5(1): 7. doi:10.1186/s40323-018-0100-0.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sharma, Luv1, Autor           
Peerlings, Ron H. J.1, Autor           
Shanthraj, Pratheek2, Autor           
Roters, Franz2, Autor           
Geers, Marc G. D.3, Autor           
Affiliations:
1Mechanics of Materials Group, Materials Technology Institute, Eindhoven University of Technology, Eindhoven, The Netherlands, ou_persistent22              
2Theory and Simulation, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863392              
3Department of Mechanical Engineering, Mechanics of Materials, TU Eindhoven, The Netherlands, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In this paper, two nonlocal approaches to incorporate interface damage in fast Fourier transform (FFT) based spectral methods are analysed. In FFT based methods, the discretisation is generally non-conforming to the interfaces and hence interface elements cannot be used. This limitation is remedied using the interfacial band concept, i.e., an interphase region of a finite thickness is used to capture the response of a physical sharp interface. Mesh dependency due to localisation in the softening interphase is avoided by applying established regularisation strategies, integral based nonlocal averaging or gradient based nonlocal damage, which render the interphase nonlocal. Application of these regularisation techniques within the interphase sub-domain in a one dimensional FFT framework is explored. The effectiveness of both approaches in terms of capturing the physical fracture energy, computational aspects and ease of implementation is evaluated. The integral model is found to give more regularised solutions and thus a better approximation of the fracture energy. © 2018, The Author(s).

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-12-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1186/s40323-018-0100-0
BibTex Citekey: Sharma2018
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Modeling and Simulation in Engineering Sciences
  Kurztitel : Adv. Model. and Simul. in Eng. Sci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Heidelberg, Germany : Springer
Seiten: - Band / Heft: 5 (1) Artikelnummer: 7 Start- / Endseite: - Identifikator: ISSN: 2213-7467
CoNE: https://pure.mpg.de/cone/journals/resource/2213-7467