English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
 PreviousNext  
  A Model-Structure of a Periplasm-facing State of the NhaA Antiporter Suggests the Molecular Underpinnings of pH-induced Conformational Changes.

Schushan, M., Rimon, A., Haliloglu, T., Forrest, L. R., Padan, E., & Ben-Tal, N. (2012). A Model-Structure of a Periplasm-facing State of the NhaA Antiporter Suggests the Molecular Underpinnings of pH-induced Conformational Changes. The Journal of Biological Chemistry, 287(22), 18249-18261.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Schushan, Maya, Author
Rimon, Abraham, Author
Haliloglu, Turkan, Author
Forrest, Lucy R.1, Author           
Padan, Etana, Author
Ben-Tal, Nir, Author
Affiliations:
1Max Planck Research Group of Computational Structural Biology, Max Planck Institute of Biophysics, Max Planck Society, ou_2068293              

Content

show
hide
Free keywords: -
 Abstract: The Escherichia coli NhaA antiporter couples the transport of H+ and Na+ (or Li+) ions to maintain the proper pH range and Na+ concentration in cells. A crystal structure of NhaA, solved at pH 4, comprises 12 transmembrane helices (TMs), arranged in two domains, with a large cytoplasm-facing funnel and a smaller periplasm-facing funnel. NhaA undergoes conformational changes, e.g. after pH elevation to alkaline ranges, and we used two computational approaches to explore them. On the basis of pseudo-symmetric features of the crystal structure, we predicted the structural architecture of an alternate, periplasm-facing state. In contrast to the crystal structure, the model presents a closed cytoplasmic funnel, and a periplasmic funnel of greater volume. To examine the transporter functional direction of motion, we conducted elastic network analysis of the crystal structure and detected two main normal modes of motion. Notably, both analyses predicted similar trends of conformational changes, consisting of an overall rotational motion of the two domains around a putative symmetry axis at the funnel centers, perpendicular to the membrane plane. This motion, along with conformational changes within specific helices, resulted in closure at the cytoplasmic end and opening at the periplasmic end. Cross-linking experiments, performed between segments on opposite sides of the cytoplasmic funnel, revealed pH-dependent interactions consistent with the proposed conformational changes. We suggest that the model-structure and predicted motion represent alkaline pH-induced conformational changes, mediated by a cluster of evolutionarily conserved, titratable residues, at the cytoplasmic ends of TMsII, V, and IX.

Details

show
hide
Language(s): eng - English
 Dates: 2012-05-25
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 631076
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Biological Chemistry
  Alternative Title : J. Biol. Chem.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 287 (22) Sequence Number: - Start / End Page: 18249 - 18261 Identifier: -