English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE

Groemping, Y., Klostermeier, D., Herrmann, C., Veit, T., Seidel, R., & Reinstein, J. (2001). Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE. Journal of Molecular Biology (London), 305(5), 1173-1183. doi:10.1006/jmbi.2000.4373.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE

Files

show Files
hide Files
:
JMolBiol_305_2001_1173.pdf (Any fulltext), 246KB
 
File Permalink:
-
Name:
JMolBiol_305_2001_1173.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Creators

show
hide
 Creators:
Groemping, Yvonne1, Author           
Klostermeier, Dagmar, Author
Herrmann, Christine, Author
Veit, Thomas, Author
Seidel, Ralf, Author
Reinstein, Jochen1, Author           
Affiliations:
1Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society, ou_1497700              

Content

show
hide
Free keywords: chaperone; DnaK; GrpE; fluorescence; nucleotide exchange
 Abstract: The nucleotide binding and release cycle of the molecular chaperone DnaK is regulated by the accessory proteins GrpE and DnaJ, also called co-chaperones. The concerted action of the nucleotide exchange factor GrpE and the ATPase-stimulating factor DnaJ determines the ratio of the two nucleotide states of DnaK, which differ in their mode of interaction with unfolded proteins. In the Escherichia coli system, the stimulation by these two antagonists is comparable in magnitude, resulting in a balance of the two nucleotide states of DnaK(Eco) in the absence and the presence of co-chaperones. The regulation of the DnaK chaperone system from Thermus thermophilus is apparently substantially different. Here, DnaJ does not stimulate the DnaK-mediated ATP hydrolysis and thus does not appear to act as an antagonist of the nucleotide exchange factor GrpE(Tth). This raises the question of whether T. thermophilus GrpE stimulates nucleotide exchange to a smaller degree as compared to the E. coli system and how the corresponding rates relate to intrinsic ATPase and ATP binding as well as luciferase refolding kinetics of T. thermophilus DnaK. We determined dissociation constants as well as kinetic constants that describe the interactions between the T. thermophilus molecular chaperone DnaK, its nucleotide exchange factor GrpE and the fluorescent ADP analogue N8-(4-N'-methylanthraniloylaminobutyl)-8-aminoadenosine-5'-diphosphate by isothermal equilibrium titration calorimetry and stopped-flow kinetic experiments and investigated the influence of T. thermophilus DnaJ on the DnaK nucleotide cycle. The interaction of GrpE with the DnaK.ADP complex versus nucleotide-free DnaK can be described by a simple equilibrium system, where GrpE reduces the affinity of DnaK for ADP by a factor of about 10. Kinetic experiments indicate that the maximal acceleration of nucleotide release by GrpE is 80,000-fold at a saturating GrpE concentration. Our experiments show that in T. thermophilus, although the thermophilic DnaK system displays no stimulation of the DnaK-ATPase activity by DnaJ, nucleotide exchange is still efficiently stimulated by GrpE. This indicates that two counteracting factors are not absolutely necessary to maintain a functional and regulated chaperone cycle. This conclusion is corroborated by data that show that the slower ATPase cycle of the DnaK system as well as of heterologous T. thermophilus DnaK/E. coli DnaK systems is directly reflected in altered refolding kinetics of firefly luciferase but not necessarily in refolding yields.

Details

show
hide
Language(s): eng - English
 Dates: 2000-12-062000-10-102000-12-072001-02-02
 Publication Status: Issued
 Pages: 11
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 666173
DOI: 10.1006/jmbi.2000.4373
URI: http://www.ncbi.nlm.nih.gov/pubmed/11162122
Other: 5004
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Molecular Biology (London)
  Other : J Mol Biol
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Academic Press
Pages: - Volume / Issue: 305 (5) Sequence Number: - Start / End Page: 1173 - 1183 Identifier: ISSN: 0022-2836
CoNE: https://pure.mpg.de/cone/journals/resource/954922646042