Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Unravelling the complexity and redundancy of carbon catabolic repression in Pseudomonas fluorescens SBW25

Liu, Y., Gokhale, C. S., Rainey, P. B., & Zhang, X.-X. (2017). Unravelling the complexity and redundancy of carbon catabolic repression in Pseudomonas fluorescens SBW25. Molecular Microbiology, 105(4), 589-605. doi:10.1111/mmi.13720.

Item is

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Liu, Yunhao, Autor
Gokhale, Chaitanya S.1, Autor           
Rainey, Paul B.2, Autor           
Zhang, Xue-Xian, Autor
Affiliations:
1Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_1445641              
2Department Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_2421699              

Inhalt

einblenden:
ausblenden:
Schlagwörter: bacterial protein; messenger RNA; protein CbrAB; succinic acid; unclassified drug; untranslated RNA; xylose, Article; bacterial gene; catabolite repression; controlled study; crcY gene; crcZ gene; gene function; gene inactivation; hfq gene; mathematical model; mutagenesis; nonhuman; priority journal; protein RNA binding; Pseudomonas fluorescens; transcription initiation; transposon; xut gene
 Zusammenfassung: The two-component system CbrAB is the principal regulator for cellular metabolic balance in Pseudomonas fluorescens SBW25 and is necessary for growth on many substrates including xylose. To understand the regulatory linkage between CbrAB and genes for xylose utilization (xut), we performed transposon mutagenesis of ΔcbrB to select for Xut+ suppressors. This led to identification of crc and hfq. Subsequent genetic and biochemical analysis showed that Crc and Hfq are key mediators of succinate-provoked carbon catabolite repression (CCR). Specifically, Crc/Hfq sequentially bind to mRNAs of both the transcriptional activator and structural genes involved in xylose catabolism. However, in the absence of succinate, repression is relieved through competitive binding by two ncRNAs, CrcY and CrcZ, whose expression is activated by CbrAB. These findings provoke a model for CCR in which it is assumed that crc and hfq are functionally complementary, whereas crcY and crcZ are genetically redundant. Inactivation of either crcY or crcZ produced no effects on bacterial fitness in laboratory media, however, results of mathematical modelling predict that the co-existence of crcY and crcZ requires separate functional identity. Finally, we provide empirical evidence that CCR is advantageous in nutrient-complex environments where preferred carbon sources are present at high concentrations but fluctuate in their availability. © 2017 John Wiley Sons Ltd

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-05-242017-06-192017-08
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1111/mmi.13720
BibTex Citekey: Liu2017589
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Molecular Microbiology
  Andere : Mol. Microbiol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford : Blackwell Science
Seiten: - Band / Heft: 105 (4) Artikelnummer: - Start- / Endseite: 589 - 605 Identifikator: ISSN: 0950-382X
CoNE: https://pure.mpg.de/cone/journals/resource/954925574950