Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Structural Anisotropy Determining the Oxygen Evolution Mechanism of Strongly Correlated Perovskite Nickelate Electrocatalyst

Peng, M., Huang, J., Zhu, Y., Zhou, H., Hu, Z., Liao, Y.-K., et al. (2021). Structural Anisotropy Determining the Oxygen Evolution Mechanism of Strongly Correlated Perovskite Nickelate Electrocatalyst. ACS Sustainable Chemistry & Engineering, 9(11), 4262-4270. doi:10.1021/acssuschemeng.1c00596.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Peng, Meilan1, Autor
Huang, Jijie1, Autor
Zhu, Yinlong1, Autor
Zhou, Hua1, Autor
Hu, Zhiwei2, Autor           
Liao, Yi-Kai1, Autor
Lai, Yu-Hong1, Autor
Chen, Chien-Te1, Autor
Chu, Ying-Hao1, Autor
Zhang, Kelvin H. L.1, Autor
Fu, Xianzhu1, Autor
Zuo, Fan1, Autor
Li, Jianhui1, Autor
Sun, Yifei1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863461              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Anisotropic modulation, Electrocatalyst, Lattice oxygen mechanism, Nickelate, Oxygen evolution reaction, Anisotropy, Electrocatalysts, Neodymium compounds, Nickel compounds, Oxygen, Oxygen evolution reaction, Perovskite, Catalytic mechanisms, Critical determinant, Density function theory, Evolution mechanism, Oxygen evolution reaction (oer), Oxygen vacancy formation energies, Reaction mechanism, Structural anisotropy, Oxygen vacancies
 Zusammenfassung: The regulation of reactive centers by involving the participation of lattice oxygen has been reported as an effective strategy for lowering the reaction barrier for the oxygen evolution reaction (OER). However, the control of the OER pathway by taking advantage of the intrinsic properties of catalysts remains a challenging task. Herein, we adopt perovskite nickelate (i.e., NdNiO3 (NNO)) and establish the link between structural anisotropy and the OER catalytic mechanism. The results elucidate that NNO with (100), (110), and (111) orientations display similar oxidative states and metal-oxygen covalency characteristics but distinct OER activities following the order of (100) > (110) > (111). Density function theory (DFT) results confirm that film orientation is a critical determinant of the reaction mechanism. The OER on (100)-NNO favors proceeding via a lattice-oxygen-mediated mechanism (LOM). In contrast, the reaction on (110)-NNO and (111)-NNO follows the adsorbate evolution mechanism (AEM). The anisotropic oxygen vacancy formation energy and stability are strongly correlated to the reaction mechanism and performance, which can be described in brief by the metal-oxygen bond valence. Our results are a step toward achieving the long-sought convenient approach to tune the OER mechanism, which is applicable for a wide range of sustainable energy-related devices. © 2021 American Chemical Society. All rights reserved.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-03-122021-03-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acssuschemeng.1c00596
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Sustainable Chemistry & Engineering
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 9 (11) Artikelnummer: - Start- / Endseite: 4262 - 4270 Identifikator: -