English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Global impact of monocyclic aromatics on tropospheric composition

Cabrera-Perez, D., Taraborrelli, D., Lelieveld, J., Hoffmann, T., & Pozzer, A. (2017). Global impact of monocyclic aromatics on tropospheric composition. Atmospheric Chemistry and Physics Discussions, 17.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Cabrera-Perez, David1, Author           
Taraborrelli, Domenico1, Author           
Lelieveld, Jos1, Author           
Hoffmann, Thorsten, Author
Pozzer, Andrea1, Author           
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Content

show
hide
Free keywords: -
 Abstract: Aromatic compounds are reactive species influencing ozone formation, OH concentrations and organic aerosol formation. An assessment of their impacts on the gas-phase composition at a global scale has been performed using a general circulation atmospheric-chemistry model. Globally, we found a small annual average net decrease (less than 3 %) in global OH, ozone, and NOx mixing ratios when aromatic compounds are included in the chemical mechanism. This inclusion of aromatics also results in CO mixing ratio increases, which cause a general decrease in OH concentrations. The largest changes are found in glyoxal and NO3, with increases in the atmospheric burden of 10 % and 6 %, respectively. Regionally, significant differences were found particularly in high NOx regime areas, with an increase of up to 4 % in O3 mixing ratios and 8 % in OH concentrations. NO3 increased by more than 30 % in several regions of the northern hemisphere, and glyoxal increased up to 40 % in Europe and Asia. Large increases in formaldehyde were found in urban areas. Although the relative impact of aromatics at the global scale is limited, at a regional level they are important in atmospheric chemistry

Details

show
hide
Language(s): eng - English
 Dates: 2017
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/acp-2017-928
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics Discussions
  Abbreviation : Atmos. Chem. Phys. Discuss.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geophysical Society, Copernicus Publ.
Pages: 25 Volume / Issue: 17 Sequence Number: - Start / End Page: - Identifier: ISSN: 1680-7367
CoNE: https://pure.mpg.de/cone/journals/resource/111076360006006