Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  On Subexponential Running Times for Approximating Directed Steiner Tree and Related Problems

Cygan, M., Kortsarz, G., & Laekhanukit, B. (2018). On Subexponential Running Times for Approximating Directed Steiner Tree and Related Problems. Retrieved from http://arxiv.org/abs/1811.00710.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier
Latex : {On Subexponential Running Times for Approximating Directed Steiner Tree and Related Problems}

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1811.00710.pdf (Preprint), 249KB
Name:
arXiv:1811.00710.pdf
Beschreibung:
File downloaded from arXiv at 2018-12-12 10:03
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Cygan, Marek1, Autor
Kortsarz, Guy1, Autor
Laekhanukit, Bundit2, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Data Structures and Algorithms, cs.DS
 Zusammenfassung: This paper concerns proving almost tight (super-polynomial) running times,
for achieving desired approximation ratios for various problems. To illustrate,
the question we study, let us consider the Set-Cover problem with n elements
and m sets. Now we specify our goal to approximate Set-Cover to a factor of
(1-d)ln n, for a given parameter 0<d<1. What is the best possible running time
for achieving such approximation? This question was answered implicitly in the
work of Moshkovitz [Theory of Computing, 2015]: Assuming both the Projection
Games Conjecture (PGC) and the Exponential-Time Hypothesis (ETH), any ((1-d) ln
n)-approximation algorithm for Set-Cover must run in time >= 2^{n^{c d}}, for
some constant 0<d<1.
We study the questions along this line. First, we show that under ETH and PGC
any ((1-d) \ln n)-approximation for Set-Cover requires 2^{n^{d}}-time. This
(almost) matches the running time of 2^{O(n^d)} for approximating Set-Cover to
a factor (1-d) ln n by Cygan et al. [IPL, 2009]. Our result is tight up to the
constant multiplying the n^{d} terms in the exponent. This lower bound applies
to all of its generalizations, e.g., Group Steiner Tree (GST), Directed Steiner
(DST), Covering Steiner Tree (CST), Connected Polymatroid (CP). We also show
that in almost exponential time, these problems reduce to Set-Cover: We show
(1-d)ln n approximation algorithms for all these problems that run in time
2^{n^{d \log n } poly(m).
We also study log^{2-d}n approximation for GST. Chekuri-Pal [FOCS, 2005]
showed that GST admits (log^{2-d}n)-approximation in time
exp(2^{log^{d+o(1)}n}), for any 0 < d < 1. We show the lower bound of GST: any
(log^{2-d}n)-approximation for GST must run in time >=
exp((1+o(1)){log^{d-c}n}), for any c>0, unless the ETH is false. Our result
follows by analyzing the work of Halperin and Krauthgamer [STOC, 2003]. The
same lower and upper bounds hold for CST.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-11-012018
 Publikationsstatus: Online veröffentlicht
 Seiten: 13 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1811.00710
URI: http://arxiv.org/abs/1811.00710
BibTex Citekey: Cygan_arXiv1811.00710
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: