English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Integration of visual and extra-retinal self-motion during voluntary head movements in the human brain

Schindler, A., & Bartels, A. (2016). Integration of visual and extra-retinal self-motion during voluntary head movements in the human brain. Poster presented at 46th Annual Meeting of the Society for Neuroscience (Neuroscience 2016), San Diego, CA, USA.

Item is

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Schindler, A1, 2, Author           
Bartels, A1, 2, Author           
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Content

show
hide
Free keywords: -
 Abstract: Our phenomenological experience of the stable world is maintained due to continuous integration of visual self-motion with extra-retinal signals. This mechanism is not only essential for locomotion and navigation but also a crucial prerequisite for virtually any successful interaction with our environment. Constraints in fMRI acquisition methods previously prevented the study of neural processing associated to integration of visual signals with those related to head-movement. Here, we developed a novel and ecologically valid fMRI paradigm that enabled us to study integration of optic flow with extra-retinal heading signals while observers performed voluntary head movements. Our results provide first evidence for the multisensory integration of head-motion in human regions MST, VIP, the cingulate visual area (CSv) and a region in pecuneus (Pc) that are known to process visual self-motion signals. In addition, we found multisensory heading integration in posterior insular cortex (PIC) that we suggest to be homolog to monkey visual posterior sylvian (VPS). In contrast, no integration was found in parieto-insular-vestibular cortex (PIVC). These results identify for the first time head-movement related integration of visual heading signals in the human brain, and identify a clear functional segregation of the human posterior insular cortex.

Details

show
hide
Language(s):
 Dates: 2016-11-14
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: SchindlerB2016_3
 Degree: -

Event

show
hide
Title: 46th Annual Meeting of the Society for Neuroscience (Neuroscience 2016)
Place of Event: San Diego, CA, USA
Start-/End Date: -

Legal Case

show

Project information

show

Source 1

show
hide
Title: 46th Annual Meeting of the Society for Neuroscience (Neuroscience 2016)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 329.01 Start / End Page: - Identifier: -